
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

mathématicien diplômé EPF
de nationalité suisse et originaire de Vermes (JU)

acceptée sur proposition du jury:

Lausanne, EPFL
2006

Prof. E. Telatar, président du jury
Prof. S. Vaudenay, directeur de thèse

Prof. M. Franklin, rapporteur
Prof. A. Lenstra, rapporteur
Prof. J. Stern, rapporteur

Short undeniable signatures:
Design, Analysis, and Applications

Jean Monnerat

THÈSE NO 3691 (2006)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE le 15 décembre 2006

à la faculté informatique et communications

Laboratoire de sécurité et cryptographie

SECTION DE systèmes de communication

to Susan

— i —

Abstract

Digital signatures are one of the main achievements of public-key cryptography
and constitute a fundamental tool to ensure data authentication. Although their
universal verifiability has the advantage to facilitate their verification by the recip-
ient, this property may have undesirable consequences when dealing with sensitive
and private information. Motivated by such considerations, undeniable signatures,
whose verification requires the cooperation of the signer in an interactive way, were
invented.

This thesis is mainly devoted to the design and analysis of short undeniable sig-
natures. Exploiting their online property, we can achieve signatures with a fully
scalable size depending on the security requirements. To this end, we develop a
general framework based on the interpolation of group elements by a group ho-
momorphism, leading to the design of a generic undeniable signature scheme. On
the one hand, this paradigm allows to consider some previous undeniable signature
schemes in a unified setting. On the other hand, by selecting group homomorphisms
with a small group range, we obtain very short signatures.

After providing theoretical results related to the interpolation of group homo-
morphisms, we develop some interactive proofs in which the prover convinces a
verifier of the interpolation (resp. non-interpolation) of some given points by a
group homomorphism which he keeps secret. Based on these protocols, we devise
our new undeniable signature scheme and prove its security in a formal way. We
theoretically analyze the special class of group characters on Z∗n. After studying
algorithmic aspects of the homomorphism evaluation, we compare the efficiency of
different homomorphisms and show that the Legendre symbol leads to the fastest
signature generation. We investigate potential applications based on the specific
properties of our signature scheme. Finally, in a topic closely related to undeniable
signatures, we revisit the designated confirmer signature of Chaum and formally
prove the security of a generalized version.

Keywords: undeniable signatures, short signatures

— iii —

Résumé

Les signatures numériques sont l’un des principaux accomplissements de la cryp-
tographie à clef publique et constituent un outil indispensable pour assurer l’au-
thenticité des données. Bien que leur vérifiabilité universelle facilite leur vérification
par un destinataire, cette propriété peut avoir des conséquences indésirables dans un
contexte lié à des informations sensibles ou privées. Motivées par ces considérations,
les signatures incontestables, dont la vérification requiert la coopération du signa-
taire de manière interactive, ont vu le jour.

Cette thèse se consacre principalement au développement et à l’analyse de si-
gnatures incontestables courtes. Grâce à leur propriété interactive, nous parvenons
à développer des signatures dont la taille peut être ajustée librement par rapport à
la sécurité requise. A cet effet, nous proposons un cadre général, basé sur l’interpola-
tion d’éléments d’un groupe par un homomorphisme, nous permettant de concevoir
un schéma de signature incontestable générique. D’une part, ce cadre théorique nous
permet de considérer des précédents schémas de signature incontestable de manière
unifiée. D’autre part, en choisissant un homomorphisme de groupe adéquat, des
signatures courtes sont obtenues de manière naturelle.

Après la présentation de résultats théoriques liés à l’interpolation d’homomor-
phismes de groupe, nous développons des preuves interactives dans lesquelles le
prouveur convainc un vérifieur de l’interpolation (ou, respectivement, de la non inter-
polation) de points donnés, par un homomorphisme secrètement connu de lui-même.
A partir de ces protocoles, nous développons un schéma de signature incontestable et
prouvons sa sécurité de manière formelle. Nous menons une analyse théorique concer-
nant la classe particulière d’homomorphismes que sont les charactères de groupe sur
Z∗n. Après une étude des aspects algorithmiques de l’évaluation d’un homomorphisme
de groupe, nous comparons l’efficacité de différents homomorphismes et montrons
que le symbole de Legendre conduit à la génération de signature la plus efficace.
Nous étudions des applications potentielles utilisant les propriétés spécifiques de
notre schéma de signature. Finalement, dans un domaine intimement lié aux signa-
tures incontestables, nous décrivons une généralisation du schéma de signature à
confirmeur désigné de Chaum et en prouvons la sécurité de manière rigoureuse.

Mots-clés : signatures incontestables, signatures courtes

— v —

Acknowledgments

First of all, I would like to express all my gratitude to Serge Vaudenay who gave
me the opportunity to accomplish this thesis in an ideal environment, although my
cryptographic knowledge was very limited when we first met. His excellent scientific
advices and guidance throughout the last four years brought me so much!

It was a real pleasure to prepare this work in such a friendly atmosphere. This
is mostly due to all my current and former colleagues of the LASEC: Gildas Avoine,
Thomas Baignères, Claude Barral, Julien Brouchier, Brice Canvel, Martine Corval,
Matthieu Finiasz, Yi Lu, Philippe Oechslin, Sylvain Pasini, and Martin Vuagnoux.
In particular, I profoundly thank Gildas for the three years during which we shared
the same office. His friendship and our very interesting discussions related to basi-
cally everything, and in particular, the French King “Pépin le Bref”, considerably
contributes to make my day-to-day work quite enjoyable. Pascal, my first office
mate, deserves special thanks for being the person who made me discover the excit-
ing world of cryptography and for taking the time to proofread this thesis.

A part of my PhD student life allowed me to meet very interesting and friendly
people of the cryptographic community at different conferences and workshops.
There would be too many persons to thank and the risk to forget people is quite high,
so I prefer to thank all of them here for very interesting scientific and non-scientific
discussions. I warmly thank Emmanuel Bresson for having shared a very nice trip
after the PKC workshop in 2004 and Damien Vergnaud and Fabien Laguillaumie
who invited me in Caen (France) to present a part of this work at a seminar.

I thank the president of the jury Prof. Emre Telatar as well as Prof. Matthew
Franklin, Prof. Arjen Lenstra, and Prof. Jacques Stern for having accepted to take
a non-negligible part of their time for reviewing this work. This is an honour for me
to have such brilliant researchers in my thesis committee.

I also express my thanks to the Swiss National Science Foundation which par-
tially supported this thesis under the grants 200021-101453/1 and 200020-109133.

Finally, I would like to heartily thank my parents who always gave the best of
themselves for my education as well as my brothers and my sister for their constant
support and motivation. Last but not least, I am infinitely grateful to my wife
Susan for her sincere love and her unconditional support during the whole time of
this work. I dedicate this thesis to her.

— vii —

Contents

Abstract iii

Résumé v

Acknowledgments vii

1 Introduction 1

2 Preliminaries in Cryptography 7

2.1 Notation and Background . 7

2.2 Some Cryptographic Primitives . 10

2.2.1 Public-Key Cryptosystem . 10

2.2.2 Digital Signatures . 12

2.2.3 Hash Functions . 13

2.2.4 Pseudorandom Generators . 14

2.2.5 Commitment Schemes . 14

2.3 Interactive Proofs . 18

3 Overview on Undeniable and Designated Confirmer Signatures 25

3.1 Signatures with Online Verification 25

3.2 Definitions . 27

3.2.1 Undeniable Signatures . 27

3.2.2 Designated Confirmer Signatures 28

3.3 Security Model . 29

3.3.1 Undeniable Signatures . 30

3.3.2 Designated Confirmer Signatures 34

3.4 Related Work . 36

— ix —

4 MOVA Undeniable Signature 41

4.1 Interpolation of Group Homomorphisms 42

4.1.1 Problem Definitions . 42

4.1.2 Preliminaries . 45

4.1.3 Problem Approximations . 51

4.1.4 Problem Amplifications and Reductions 57

4.2 Interactive Proof Protocols . 60

4.2.1 Interactive Proof for the GHID Problem 60

4.2.2 Interactive Proof for the co-GHID Problem 67

4.2.3 Interactive Proof for the MGGD Problem 71

4.2.4 2-Move Interactive Proofs . 78

4.3 The MOVA Scheme . 85

4.4 Security Properties . 88

4.4.1 2-Move MOVA Scheme . 88

4.4.2 Security of the 4-Move MOVA Scheme 93

4.4.3 Security of the Setup Variants 94

4.4.4 Security Parameters . 96

4.5 Additional Properties . 98

4.5.1 Batch Verification . 98

4.5.2 Selective Convertibility . 99

5 Characters on Z∗n and Applications to MOVA 101

5.1 Characters on Z∗n . 102

5.1.1 Characters of Order 2 . 103

5.1.2 Characters of Order 3 . 104

5.1.3 Characters of Order 4 . 106

5.1.4 Characters of Higher Order 108

5.2 Instantiations for the MOVA Scheme 109

5.2.1 Characters of Order 2 . 109

5.2.2 Characters of Order 3 . 110

5.2.3 Characters of Order 4 . 111

5.2.4 A Variant with Two Levels of Secret 111

5.3 On the Hardness of Related Problems 112

5.4 A Variant without Primes . 119

5.4.1 Theoretical Results about Prime Factors 120

5.4.2 Resistance of a Random Modulus 121

5.5 On the MOVA Key Validation . 124

— x —

6 Additional Homomorphisms and Algorithmic Issues 129
6.1 Homomorphisms . 129

6.1.1 Characters on Z∗n . 130
6.1.2 RSA . 130
6.1.3 Discrete Logarithm in a Hidden Subgroup 130

6.2 Quartic Residue Symbol . 132
6.2.1 Basic Algorithm . 132
6.2.2 Algorithm of Damg̊ard and Frandsen 134
6.2.3 Other Algorithms . 134

6.3 Discrete Logarithm in a Hidden Subgroup 136
6.4 Implementation . 136

6.4.1 Quartic Residue Symbol . 137
6.4.2 Discrete Logarithm . 137

6.5 Results . 138
6.5.1 Quartic Residue Symbol . 138
6.5.2 Signature Generation . 139

7 Applications of the MOVA Scheme 141
7.1 Potential MOVA Applications . 142

7.1.1 General Properties of MOVA 142
7.1.2 Banknote Protection . 143
7.1.3 Sensitive Software Protection 145
7.1.4 Credit Card Number Verification 146

7.2 SMS Lottery . 147
7.2.1 Scenario . 147
7.2.2 Our Lottery Protocol . 148
7.2.3 Security Analysis . 151
7.2.4 Parameter Specifications and the Swiss Lotto Case 156

8 Generalized Chaum’s Designated Confirmer Signature 159
8.1 The Generalized Chaum’s Construction 160

8.1.1 Building Blocks . 160
8.1.2 The Scheme . 162

8.2 Security Results . 163
8.2.1 Security Against Existential Forgeries 163
8.2.2 Invisibility . 166
8.2.3 Other Security Properties . 168

8.3 A Practical Example . 169
8.4 On Feasibility Results Based on Cryptographic Primitives 169

8.4.1 Discussion . 169
8.4.2 UnSign and Public-Key Encryption 171

— xi —

9 Conclusion and Future Work 173

A Algebra 175
A.1 The Structure of Finite Abelian Groups 175
A.2 Integral Domains . 176
A.3 Lattices . 177

Bibliography 179

Curriculum Vitæ 195

— xii —

Chapter 1
Introduction

Digital signatures undoubtedly constitute one of the most fundamental tools of
public-key cryptography. They formally consist in binding some information with a
player associated with a given public key. Provided that the signer’s public key was
given to the recipient through an authenticated channel, this one can securely verify
signatures sent by the signer. In this way, transmitting a message with its respective
signature over a communication channel guarantees the message’s authenticity to the
recipient. As explained above, classical digital signatures are verifiable by anybody
who knows the signer’s public key.

Although the universal verifiability of digital signatures is very convenient in
most applications, it may lead to undesirable consequences in the case of private
or commercially sensitive information. In particular, compromising authenticated
documents can be publicly released in a very easy and efficient way. This motivates
the introduction of undeniable signatures for which verification of a signature must
be done in an interactive way with the signer. Besides privacy reasons, undeniable
signatures can be used for additional purposes such as digital cash or the licensing
of sensitive software.

Since the invention of undeniable signatures, several schemes with various proper-
ties and different underlying mathematical problems have been developed. Although
a considerable amount of work has been dedicated to the design of undeniable sig-
nature schemes, results towards the design of very short (e.g., 40 bits) undeniable
signatures have not been published. This thesis is mainly concerned with the design
of a scheme offering very short signatures, or more precisely, signatures which are
fully scalable with respect to a security level. To this end, we introduce a generic
scheme based on group homomorphisms which are hard to evaluate if one does not
possess the secret key. This generic setting allows us to make very short signa-
tures by selecting the group homomorphism with a small range group, while the
domain size can be adjusted so that an adversary with any given computational

1. Introduction

power (without the secret key) cannot evaluate the group homomorphism.
Most of the work presented in this thesis is dedicated to the development and

the analysis of this scheme called MOVA. In addition to this, we devote a part to
the so-called designated confirmer signatures which are closely related to undeniable
signatures. Namely, designated confirmer signatures are like undeniable signatures
except that the verification is shifted to a third party, called the confirmer.

Thesis Outline

Chapter 2 aims at providing a brief overview of the cryptographic background re-
quired to understand the sequel of this work. After recalling some definitions related
to indistinguishability of probability ensembles, we discuss the computational model
and summarize the methodology of reductionist proofs usually used in public-key
cryptography to show the security of a cryptographic scheme. We present a com-
monly used idealization of a security model arisen by the introduction of idealized
functions called random oracles. Then, we review the definition and security notions
of several cryptographic primitives which will play an important role in this thesis
such as commitment schemes. The last section of this chapter is dedicated to a
survey of interactive proofs and zero-knowledge notion which are necessary in the
verification protocols of an undeniable signature scheme.

Chapter 3 is devoted to general aspects of undeniable and designated confirmer
signatures. First, we present the context and motivations of the introduction of
these cryptographic primitives and discuss the main differences with classical digital
signatures. The subsequent section provides a formal definition of these two kinds
of signatures. Next to this, we develop the security properties related to them and
the verification protocols. Certain security properties are considered with different
requirements in terms of the ability of the adversary and goal this one needs to
achieve. To conclude this chapter, we give an overview of the historical development
of undeniable and designated confirmer signatures.

Then, Chapter 4 is dedicated to the design and security analysis of our new
undeniable signature scheme called MOVA. We first put forward the concept of inter-
polation of group homomorphisms, consider some related computational problems,
and provide some technical results necessary for the rest of this chapter. Subse-
quently, we develop some interactive proofs which allow a prover to convince a
verifier whether a given set of points interpolates in a group homomorphism, i.e.,
whether there exists a homomorphism whose graph contains the whole set of points.
In addition, we propose an interactive proof which will be used by the signer to
show that the public key is valid. Based on these results, we present the compo-
nents of the MOVA scheme and prove security results according to the definitions
given in the previous chapter. We also derive some security bounds which allow to
quantify the security of the different properties with respect to the hardness of un-

— 2 —

derlying problems and the adversary’s ability. At the end, we discuss the possibility
of verifying several signatures at the same time and the possibility to convert some
signatures into universally verifiable ones.
Most of the results obtained in this chapter have been published in [107] at the
ASIACRYPT ’04 conference and in [111] at the VIETCRYPT ’06 conference. The
MOVA scheme is actually a generalization on a previous scheme [109] based on group
characters that we presented at the PKC ’04 workshop. In addition, the MOVA
scheme led to a patent application [112]. All these results have been achieved in a
joint work with Serge Vaudenay.

Chapter 5 exposes an in-depth analysis of a special variant of MOVA for which
homomorphisms are instantiated with group characters. We first present some gen-
eral theoretical results related to group characters defined on Z∗n by focusing to those
of order 2, 3, and 4. The former case corresponds to Jacobi symbols while the other
ones are naturally studied in the cubic and biquadratic (or quartic) residuosity the-
ory. We show how characters of this kind can be selected for MOVA and discuss a
variant with two levels of secret which only arises with cubic or quartic characters.
To study the security of MOVA in the context of characters, we exhibit reductions
of computational problems related to this MOVA variant with some more common
problems such as the factorization and some square root problems. Finally, the fea-
sibility of using in practice a MOVA instantiation without primes is treated as well
as some specifications concerning the validation of the public key in the context of
characters.
This work related to characters led to the first version of the MOVA scheme and to
a joint publication [109] with Serge Vaudenay.

Chapter 6 deals with algorithmic aspects of different possible instantiations
of MOVA. Besides those based on characters, we consider the RSA trapdoor per-
mutation and one homomorphism which consists in sending elements in a hidden
subgroup followed by a discrete logarithm computation. We particularly focus on
algorithmic specifications related to the computation of the latter and the quartic
residue symbol. We finish this chapter by exposing implementations results with
practical parameters. A comparison of the different possible instantiations show
that the Jacobi symbol leads to the fastest signature generation followed by the
variant based on the discrete logarithm in a hidden subgroup.
This chapter has mainly the same contents as an article [106] published at the
MYCRYPT ’05 conference in collaboration with Yvonne Anne Oswald and Serge
Vaudenay. The work dedicated to the quartic residue symbol and the implementa-
tions of the different instantiations were achieved in a student semester project of
Yvonne Anne Oswald [122] under our supervision.

Chapter 7 investigates potential applications which may arise from the specific
properties of the MOVA undeniable signature scheme. In particular, we focus on
taking advantage of the short size of MOVA signatures. In the first part of this chap-

— 3 —

1. Introduction

ter, we give a rather high-level description of some potential applications. Then, we
dedicate the sequel of this chapter to the study of an SMS-based lottery application.
In this protocol, the main role of the MOVA signature is to give a strong evidence
that the player’s bid was registered by the lottery.
The contents of this chapter arise from a joint work with Serge Vaudenay and results
related to the lottery application were also done in collaboration with Florin Oswald
during his master’s thesis [121].

The only part devoted to designated confirmer signatures can be found in Chap-
ter 8. We revisit the original scheme of Chaum with more general building blocks
such as an existentially forgeable undeniable signature. For the first time, a formal
security proof is provided. This shows that resistance against adaptive forgery at-
tacks can be achieved, while the invisibility can be achieved against a non-adaptive
adversary. After proposing a practical instantiation of this scheme, we discuss some
feasibility results of such a primitive. To this end, we prove that the undeniable
signature scheme considered as building block is equivalent to public-key encryption
showing that our results are consistent with a previous article of Okamoto on the
minimal assumptions for the existence of a designated confirmer signature.
These results were achieved in collaboration with Serge Vaudenay and led to a pa-
per [110] presented at the ISC ’05 conference.

Finally, we conclude this work in Chapter 9 and suggest some future research
directions related to our results, which are worth investigating from our point of
view.

Additional Contributions

Besides the results presented in this work, we would like to mention some additional
contributions achieved during these PhD studies on some topics which are not related
to undeniable signatures. Originally, we wanted to explore some algebraic tools
to seek applications in cryptography. In particular, our interests focused on the
Hensel lifting and the cubic and quartic residuosity. The former was first used in
cryptography by Nigel Smart [140] to show that a special class of curves called
anomalous have an easy discrete logarithm problem. While Hensel lifting led us to
study anomalous elliptic curves and algebraic extensions of block ciphers, we decided
to concentrate on the latter topic after having developed the MOVA variant based
on characters.

In symmetric-key cryptography, we constructed some weak algebraic extensions
of the block ciphers BES [113] and AES [2, 45]. This was done in a joint work
with Serge Vaudenay and has been presented in [108] at the ICICS ’04 conference.
In collaboration with Gildas Avoine to supervise the semester project of Thomas
Peyrin, we have provided some new theoretical and algorithmic results related to
non-adjacent form representation of integers. This paper [6] was published at the

— 4 —

INDOCRYPT ’04 conference. In a joint work [97] with Franck Leprévost, Sébastien
Varrette, and Serge Vaudenay, we have described a method to efficiently gener-
ate anomalous elliptic curves. In addition to scientific contributions, our teaching
activities motivated us to write an exercise book [8] on cryptography for undergrad-
uate students. This has been achieved with the following colleagues of the LASEC:
Thomas Baignères, Pascal Junod, Yi Lu, and Serge Vaudenay.

— 5 —

Chapter 2
Preliminaries in Cryptography

2.1 Notation and Background

The sets denoting different kind of numbers are written in “blackboard” font such
as the set of positive integers N, the relative integers Z, the real numbers R, and the
complex numbers C. We also denote by R+ the set of non negative real numbers.
The set {0, 1}∗ stands for the set of the bitstrings of arbitrary length. For any
bitstring x ∈ {0, 1}∗, we use a “norm symbol” |x| to denote its length, i.e., the
number of bits it is composed of. We use poly(·) to denote any given polynomial.
Picking an element x uniformly at random in a given set S will be written x ∈U S
or x←U S.

Definition 2.1.1. A function f : N→ R+ is called negligible if for any polynomial
p : N→ R+ there exists an integer n0 such that

n ≥ n0 ⇒ f(n) <
1

p(n)
.

Notation. We will denote by negl(·) any negligible function.

Indistinguishability. We recall the definition of the statistical distance between
two random variables.

Definition 2.1.2. The statistical distance ∆ between two discrete random variables
X1 and X2 with range X is

∆(X1, X2) :=
1

2

∑
x∈X
|Pr[X1 = x]− Pr[X2 = x]| .

2. Preliminaries in Cryptography

We now define the notion of statistical and computational indistinguishability
between two sequences of random variables with the same range X .

Definition 2.1.3. A probability ensemble is a sequence of random variables (Xi)i∈I

indexed by a set I.

From now on, I ⊆ {0, 1}∗ is a subset of strings of arbitrary length.

Definition 2.1.4 (Statistical Indistinguishability). Let (Xi)i∈I and (Yi)i∈I be two
probability ensembles of discrete random variables such that Xi and Yi have the same
range for any i ∈ I. The ensembles (Xi)i∈I and (Yi)i∈I are statistically indistinguish-
able if

∆(Xi, Yi) = negl(|i|).
Furthermore, if ∆(Xi, Yi) = 0 for any i ∈ I, we say that these ensembles are perfectly
indistinguishable.

Definition 2.1.5 (Computational Indistinguishability). Let (Xi)i∈I and (Yi)i∈I be
two ensembles of discrete random variables such that Xi and Yi have the same range
for any i ∈ I. The ensembles (Xi)i∈I and (Yi)i∈I are computationally indistinguish-
able if for any probabilistic polynomial-time (with respect to |i|) algorithm D

|Pr[D(i,Xi) = 1]− Pr[D(i, Yi) = 1]| = negl(|i|).

These definitions can be easily adapted to the case I = N and for which we
normally require that the negligible function negl takes n ∈ N as input instead of its
length. Note that this variant is trivially included in the above general definitions
if we represent any integer n ∈ N with a unary representation, i.e., with the string
1n := 111 . . . 1, where the symbol 1 appears n times.

For more information about issues related to indistinguishability, we refer to
Section 3.2 of the textbook of Goldreich [69].

Computational Model

The algorithms encountered in this work are formally modeled by Turing machines
which were already invented in 1936 by Turing [142] as a formal model of a computer,
though computers did not exist at that time. A Turing machine is composed of a
tape with an infinite number of cells each containing a symbol, a head which can
write and read symbols on the tape and move left and right, an internal state (with
two special states “initial” and “final”), and a transition function which tells the
next manipulation the machine needs to execute depending on the symbol read by
the head and the internal state. A Turing machine can have several work tapes
(initially with blank symbols) in addition to its input tape. Probabilistic algorithms

— 8 —

2.1. Notation and Background

are modeled with probabilistic Turing machines which possess an additional tape
called random tape containing uniformly random symbols (or bits).

In this thesis, we usually consider polynomial time algorithms, where the term
“polynomial” refers to the size of the input. If the algorithm is probabilistic, the
complexity of the machine should be meant as the expected complexity over the
random tape distribution. We also note that the complexity is formally measured
by the number of steps executed by the Turing machine until it reaches the final
state.

In certain situations, it is required to consider Turing machines which have an
additional access to so-called oracles which are able to perform a special functionality
such as solving a computational (hard) problem. Such a machine is called an oracle
machine and the access to the oracle is done via an additional special tape on which
the machine writes the oracle input. When the machine is in a special state called
“invocation”, the oracle input is replaced by its output. For instance, a factorization
oracle would return the prime factors of a given integer. It is important to note that
an oracle call has a constant complexity whatever the oracle is able to achieve.

Once oracle machines are defined, one can now define the notion of problem
reductions. One says that a problem P1 reduces to the problem P2 if there exists
an oracle machine which solves the problem P1 using access to an oracle solving the
problem P2. We can also say that P2 is at least as hard as P1 and we denote this
fact by P2 ≥ P1.

In public-key cryptography, we often use reductionist security proofs which con-
sists in solving a supposedly hard problem from an adversary breaking a given cryp-
tographic scheme. One then deduces that since the underlying problem is hard, the
cryptographic scheme should be secure. Here, “breaking” is specified with respect
to a security notion related to the scheme. Depending on the context, the adver-
sary may also given an access to some oracles. The difficulty of a security proof
consists in extracting information used for solving the underlying hard problem by
simulating the adversary environment.

Random Oracles

To facilitate the security analysis of cryptographic schemes, idealized objects called
random oracles [13,33,58] were introduced. Basically, a random oracle implements a
uniformly distributed random function from {0, 1}k to {0, 1}` for some given positive
integers k, `, i.e., a function which is picked uniformly at random among all possible
functions with a k-bit input and an `-bit output. In the random oracle model,
the participants have access to such idealized functions through so-called random
oracles. Such an oracle can be implemented as follows. We maintain a list with some
input-output pairs which is empty at the beginning. For any new query to the oracle,
one checks whether it is already stored as input, if this is the case, one answers the

— 9 —

2. Preliminaries in Cryptography

corresponding output stored in the list. Otherwise, one picks a uniformly random
output of ` bits and adds this new pair in the list.

When reductionist proofs are performed in the random oracle, the adversary is
given access to random oracles. These ones can be simulated in a way which helps
to achieve a reduction to a hard computational problem. This model makes security
proof easier mainly because one can feed a challenge related to a hard problem
through the simulation of random oracles.

Yet, it has been shown that a cryptographic scheme secure in the random oracle
model may lead to insecure instantiations in the standard model, i.e., in the model
without random oracles. As illustration, Bellare et al. [12] proposed a scheme which
is secure in the random oracle model such that any instantiation would lead to
an insecure scheme. We should emphasize that such schemes are some artificial
examples and, as far as we know, no natural scheme (i.e., schemes which were not
designed to explicitly show the insecurity of the random oracle model) provably
secure in the random oracle has been broken. To summarize, though random oracle
model is a strong idealization, it is commonly believed that a security proof in this
model shows that the scheme was not badly designed. An interesting discussion
about this issue can be found in Section 6 of Koblitz and Menezes [84].

2.2 Some Cryptographic Primitives

Throughout this section, k ∈ N denotes a security parameter.

2.2.1 Public-Key Cryptosystem

The realization of the first public-key cryptosystem RSA [131] is one of the main
important achievements of modern cryptography. Namely, it allows to communicate
in a confidential way with the help of an authenticated channel used to transmit the
public-key. This ensures that a message encrypted with respect to this public-key
will only be decrypted by the owner of the corresponding secret key. The concept of
public-key cryptography was first1 developed in the ground-breaking article of Diffie
and Hellman [53] without proposing a concrete public-key encryption scheme.

Below, we denote the message space by M and the ciphertext (encrypted mes-
sage) space by C. A public-key encryption scheme is composed of three polynomial
time algorithms.

Setup The key generator is a probabilistic algorithm which on input of the security
parameter 1k outputs a key pair. We have (pk, sk)← Setup(1k).

1Note that the role of Merkle who submitted already a paper [101] related to this topic in
1975 (see Chapter 9 in the textbook of Vaudenay [143]) should also be taken in consideration.

— 10 —

2.2. Some Cryptographic Primitives

Enc The encryption algorithm is a probabilistic algorithm which takes a message
m ∈ M and the public key pk as input and outputs a ciphertext c. We have
c← Enc(m, pk).

Dec The decryption algorithm is a deterministic algorithm which takes a cipher-
text c ∈ C and the secret key sk to output a message m ∈ M. We have
m ← Dec(c, sk). In some cases, the decryption algorithm checks whether the
ciphertext is of a given form and returns the symbol ⊥ if c is not valid.

Correctness. We also require that any encrypted message can be retrieved with the
decryption algorithm. Namely, for any message m ∈ M and any key pair (pk, sk)
generated by Setup, we always have

c← Enc(m, pk); m← Dec(c, sk).

We now present a security notion called indistinguishability under a chosen plain-
text attack (IND-CPA) which is based on the work of Goldwasser and Micali [72,73].
This notion formalizes the fact that two ciphertexts of two different messages should
be indistinguishable for any adversary which does not know sk. Here, the adversary
is only given pk which allows him to encrypt any message m. Therefore, the weakest
adversary one can think of, is able to perform a chosen-plaintext attack.

IND-CPA Security Notion. Let us first consider an adversary A modeled by
a probabilistic polynomial algorithm and the two following games corresponding to
b ∈ {0, 1}.

Gameind-cpa-b. First, A is fed by a public key pk generated by (pk, sk)← Setup(1k).
After a given time, the adversary A submits two messages m0, m1. The challenger
answers c← Enc(mb, pk). Then, A outputs a bit b′.

We define the advantage of the adversary as follows

Advind-cpa
A :=

∣∣Pr
[
b′ = 1 in Gameind-cpa-1

]− Pr
[
b′ = 1 in Gameind-cpa-0

]∣∣ ,

where the probabilities are over the random tapes of the involved algorithms. We say
that a public-key encryption scheme satisfies indistinguishability under a chosen-
plaintext attack (IND-CPA) if there exists no probabilistic polynomial time adver-
sary A such that Advind-cpa

A is non-negligible.

— 11 —

2. Preliminaries in Cryptography

2.2.2 Digital Signatures

The main goal of digital signatures is to reproduce the properties of a handwritten
signature in the digital world, i.e., to bind some message or data with an entity.
More generally, digital signatures serve to authenticate messages transmitted over a
communication channel, thus ensuring to the recipient that the received information
is genuine and was sent by the correct person. Since their invention, digital signa-
tures become more and more crucial and are now used in countless cryptographic
protocols. Historically, digital signatures were immediately developed with the in-
vention of public-key cryptography. Namely, in the seminal paper of Rivest, Shamir,
and Adleman [131], digital signatures are already proposed as an application of the
RSA trapdoor one-way permutation.

The message space is denoted by M and the signature space by Σ. A digital
signature scheme consists of the three following polynomial-time algorithms.

Setup This probabilistic algorithm generates a key pair which is associated with
the signer. We have (pk, sk)← Setup(1k).

Sign This probabilistic algorithm generates a signature for a given message m ∈M
with respect to the above generated key pair. We have σ ← Sign(m, sk).

Verify The verification algorithm is usually deterministic and takes a message-
signature pair (m,σ) ∈ M× Σ and the public key pk as input and outputs a
bit 0, 1← Verify(m,σ, pk) telling whether the pair (m,σ) is valid with respect
to the key pair (pk, sk). The output bit 1 means that the signature is valid.

Correctness. The signature scheme must furthermore have a verification algo-
rithm consistent with the signing algorithm. Namely, Verify must return 1 to any
signature generated by Sign. So, for any m ∈M and any key pair (pk, sk) generated
by Setup(1k), we always have

σ ← Sign(m, sk); 1← Verify(m,σ, pk).

In practice, the signer needs to send his public key pk to the verifier through an
authenticated channel so that the verifier is ensured that pk really corresponds to
the right signer. Once this step is performed, the signer can authenticate messages
using digital signatures even through an insecure communication channel.

We present the most classical security notion related to digital signatures which
is the existential unforgeability under an adaptive chosen-message attack. It was
originally introduced in the famous article of Goldwasser, Micali, and Rivest [76].

— 12 —

2.2. Some Cryptographic Primitives

Existential Unforgeability. Let us first introduce O a signing oracle. More
precisely, O is a kind of “magical” machine which on any message m sent to it
answers a valid signature, i.e., it implements the algorithm Sign. We denote by
L the list of all messages queried to O. A signature scheme is secure against an
existential forgery under an adaptive chosen-message attack, if for any probabilistic
polynomial time forger (algorithm) F , we have

Pr

[
1← Verify(m,σ, pk) ∧m 6∈ L

∣∣∣∣
(pk, sk)← Setup(1k);
(m,σ)← FO(pk)

]
= negl(k),

where the probability is taken over the random tapes of the involved algorithms. Each
invocation to the oracle O is counted in the complexity of F so that the number of
queries made to O must also be polynomially bounded in k.

2.2.3 Hash Functions

One of the most useful tool in cryptography are hash functions. They are used in
most of the protocols and digital signatures. A hash function consists in reducing
messages of arbitrary length to some bitstrings of a given length, typically of 160
bits. One of their fundamental goal is to ensure the integrity of a message, i.e., to
guarantee that a transmitted message over an insecure communication channel was
not modified. To achieve this, it suffices to hash the message and compare hashed
values of the original message and the received message. To ensure this kind of
property, it should be very difficult to find a different message with the same hashed
value. Below, we present in more details the desired properties a hash function
should satisfy.

Let k be an integer and H : {0, 1}∗ → {0, 1}k be a function taking arbitrary long
bitstrings as input. We say that H is a cryptographic hash function if the following
properties hold.

Preimage Resistance. For a given bitstring h ∈ {0, 1}k, it is computationally
infeasible to find a message m ∈ {0, 1}∗ such that H(m) = h.

Second Preimage Resistance. For a given message m ∈ {0, 1}∗, it is computa-
tionally infeasible to find a message m′ ∈ {0, 1}∗ such that m 6= m′ and H(m) =
H(m′).

Collision Resistance. It is computationally infeasible to find two messages m 6= m′

such that H(m) = H(m′).

Hash functions are used in digital signature schemes in order to reduce the mes-
sage to a given size so that subsequent algebraic transformations can be performed.

— 13 —

2. Preliminaries in Cryptography

Namely, these algebraic computations are not defined on an arbitrary size. In ad-
dition to this, hash functions are also crucial to “break” the algebraic structure
that may otherwise remain in digital signatures. For instance, any homomorphic
trapdoor one-way permutation used to sign without a hash function would immedi-
ately succumb to a chosen-message attack. In such a case, using a hash function is
fundamental in order to break the homomorphic property. To make some security
analysis easier, hash functions will often be modeled by random oracles.

2.2.4 Pseudorandom Generators

Generating a long sequence of uniformly random bits in an efficient way is often
not realizable if one does not have a dedicated device at disposal. This motivates
the use of pseudorandom generators whose goal is to generate a sequence of bits
from a short random bitstring often called the seed. More precisely, for two positive
integers ` and k with ` typically much larger than k, we say that a function

Gen : {0, 1}k → {0, 1}`

is a pseudorandom generator if for a random variable X defined on {0, 1}k with a
uniform distribution the random variable Gen(X) is computationally indistinguish-
able from a uniformly distributed random variable on {0, 1}`.

It can be shown (see Chapter 3 of Goldreich [69]) that the sequence generated by
a pseudorandom generator is unpredictable which roughly means that given a partial
sequence there exists no efficient algorithm guessing the next sequence bit with a
non-negligible advantage, i.e., with a success probability non-negligibly larger than
1/2. This shows that a pseudorandom generator necessarily breaks the structure of
the input such as hash functions do.

As concrete scheme, we mention the famous Blum-Blum-Shub pseudorandom
generator [17] whose security relies on the quadratic residuosity assumption on Blum
prime integers. Yet, for efficiency reasons it is much more convenient to use the very
recent scheme QUAD proposed by Berbain et al. [14] at the EUROCRYPT ’06
conference.

In the rest of this work, we will make use of pseudorandom generators which will
be modeled by random oracles in the security proofs.

2.2.5 Commitment Schemes

Commitment schemes play an important role in cryptography and their use is of
particular importance within cryptographic protocols. These primitives can be seen
as the “digital” analog of a safe or a sealed envelope. During the so-called com-
mitment phase, a player (the sender) wants to commit on a value (or bitstring)

— 14 —

2.2. Some Cryptographic Primitives

to a receiver such that this one cannot deduce information about the committed
value (hiding property). A second phase consists in opening the commitment by
disclosing some extra information allowing the receiver to learn the value which was
committed. It is also required that between the two phases, the sender is not able to
change his mind so that it should be impossible for him to open the commitment on
a different value from the committed one. This is called the binding property of the
commitment scheme. To summarize, the hiding property prevents from a cheating
receiver while the binding property prevents from a malicious sender.

In addition to classical commitment schemes satisfying the above properties, we
will consider some variants in which a pair of keys is generated. In this settings,
knowledge of the secret key gives additional ability such as opening a given commit-
ment on any chosen value (trapdoor commitment) or retrieving from the commitment
the initial value committed by the sender (extractable commitment).

Some parts of the material developed below are inspired from Section 3.4 of the
Master’s thesis of Pasini [124].

Commitment

We present here a formal definition of a commitment scheme. To begin with, we
denote by M the space of the messages, C the space of all commitments, and R
the space of the “decommitment” values which allow to open the commitments. A
commitment scheme is composed of the three following polynomial time algorithms.

Setup This probabilistic algorithm takes k (in unary) as input and outputs a de-
scription of some parameters. We have param ← Setup(1k), where param
contains the necessary information for specifying the algorithms Commit and
Open with respect to k.

Commit For any given m ∈ M as input, this probabilistic algorithm outputs a
commitment and a decommitment value. We have (com, dec)← Commit(m).

Open This algorithm (typically deterministic) checks whether a commitment com
corresponds to a message m and a decommitment value dec by outputting a
bit. We have 0 or 1← Open(m, com, dec), where the output 1 means that the
commitment was opened correctly.

For the sake of simplicity, we will also use the notation Commit to denote the
whole commitment scheme when the context is clear. We require the following
security properties.

— 15 —

2. Preliminaries in Cryptography

Completeness. For any m ∈M,

Pr

[
1← Open(m, com, dec)

∣∣∣∣
param← Setup(1k);
(com, dec)← Commit(m)

]
= 1− negl(k),

where the probability is taken over the random tapes of the involved algorithms.

Most of commitment schemes considered in practice have perfect completeness,
i.e., the above probability is equal to 1.

Binding Property. For any algorithm A, we have

Pr




1← Open(m, com, dec) ∧
1← Open(m′, com, dec′) ∧
m 6= m′

∣∣∣∣∣∣
param← Setup(1k);
(m,m′, com, dec, dec′)← A(param)


 = negl(k),

where the probability is taken over all random tapes of the different algorithms.

If we restrict to probabilistic polynomial time algorithms A, we say that the
commitment scheme Commit is computationally binding. If the above property holds
even against computationally unbounded adversary A, we say that the commitment
scheme Commit is statistically binding. As strongest binding notion, we say that
Commit is perfectly binding, if the above probability is equal to zero for any (com-
putationally unbounded) adversary A. This means that any commitment com ∈ C
can be opened in at most one way, i.e., there exist at most one m ∈ M and one
value dec ∈ R such that 1← Open(m, com, dec).

We denote the above success probability of an adversary A breaking the binding
property by Succcom-bnd

A .

Hiding Property. For any m ∈M, the distribution of the value com generated by
(com, dec)← Commit(m) is indistinguishable from the uniform distribution over C.

Depending on the kind of indistinguishability (i.e., perfect, statistical, computa-
tional) of both distributions, the scheme Commit is said to be perfectly, statistically,
or computationally hiding. More formally, we consider the probability ensemble
(COMk)k∈N indexed by the security parameter k where COMk is the random vari-
able corresponding to a commitment of the message m generated by the algorithm
Commit with parameters param← Setup(1k). Indistinguishability is then compared
between this ensemble with the uniform one (only composed of uniformly random
variables) for any message m. We recall that the different flavours of indistinguisha-
bility are defined in Definition 2.1.4 and Definition 2.1.5.

— 16 —

2.2. Some Cryptographic Primitives

Trapdoor Commitment

This primitive is a commitment scheme associated with a pair of keys such that the
knowledge of the secret key (trapdoor) allows to fully break the binding property by
allowing to open any commitment c ∈ C on any chosen message m ∈M. Trapdoor
commitments were first introduced by Brassard, Chaum, and Crépeau in [26] and
they are sometimes called chameleon commitments in the literature [28,85].

A trapdoor commitment scheme is composed of the four following polynomial
time algorithms.

Setup This probabilistic algorithm takes k (in unary) as input and outputs a key
pair (pk, sk)← Setup(1k).

Note that here the parameters are implicitly included in the key pair.

Commit For any given m ∈ M and any public key pk as input, this probabilis-
tic algorithm outputs a commitment and a decommitment value. We have
(com, dec)← Commit(m, pk).

Open This algorithm (typically deterministic) checks whether a commitment com
corresponds to a message m and a decommitment value dec by outputting a
bit. We have 0 or 1← Open(m, com, dec, pk), where the output 1 means that
the commitment was opened correctly.

Collide For any messages m,m′ ∈ M with m 6= m′, values dec ∈ R and com ∈ C
such that

1← Open(m, com, dec, pk),

and the secret key as input, the algorithm Collide outputs

dec′ ← Collide(m,m′, com, dec, sk)

satisfying 1← Open(m′, com, dec′, pk).

The hiding and binding property can be similarly defined as for classical com-
mitment schemes. In the binding game, the adversary A is fed only with the public
key and the indistinguishability for the hiding property must hold for any key pair.

Note that the existence of a trapdoor allowing to find collisions rules out the exis-
tence of trapdoor commitments which are statistically (and thus perfectly) binding.

As an example of a perfectly-hiding and computationally-binding trapdoor com-
mitment scheme, we refer to Bresson et al. [28]. Its binding property relies on the
difficulty of factoring an RSA modulus composed of safe primes. Additional concrete
realizations of trapdoor commitments are given in [24,26].

For additional information on trapdoor commitments and their applications, we
refer to the PhD thesis of Fischlin [60].

— 17 —

2. Preliminaries in Cryptography

Extractable Commitment

An extractable commitment scheme is a commitment scheme with associated pair
of keys such that the secret key allows to retrieve the committed message.

All algorithms are like for trapdoor commitments except that we replace Collide
by an extraction algorithm Extract.

Extract For any message m and any com ∈ C generated by Commit(m, pk), we have

m← Extract(com, sk)

such that 1← Open(m, com, dec, pk) for one dec ∈ R.

The extractability requirement implies that an extractable commitment scheme
must be perfectly binding, since a commitment com uniquely defines a committed
message m. Moreover, this property rules out the existence of statistically-hiding
extractable commitments.

More information about extractable commitments and constructions can be
found in the papers [50, 52].

2.3 Interactive Proofs

This section deals with the notion of interactive proofs which is fundamental for
the design of cryptographic protocols. It is intended to recall some basic material
and to restrict to the necessary background for the sequel of this work. Most of the
subsequent results are taken from the book of Goldreich [69] and an article of Barak
et al. [11].

The concept of interactive proofs was strongly motivated by the need of secure
cryptographic protocols such as identification protocols. Interactive proofs arise
when a player (called the prover) of the protocol needs to prove interactively the
validity of a given statement to another player (called the verifier). As an example,
we can think of a situation where a prover generates an RSA modulus n and wants
to prove to the verifier that n is indeed an RSA modulus (usually without disclosing
the prime factors of n). Interactive proofs are often the core component of an
identification protocol, where the prover convinces the verifier, he possesses a secret
with some specific properties (e.g., square root of an element modulo a composite
number) which identifies him.

Formally, the prover and the verifier are modeled by some interactive Turing
machines. Roughly, an interactive Turing machine consists in a classical Turing ma-
chine with additional tapes dedicated to the communication typically with another
interactive machine. More precisely, an interactive Turing machine is a probabilistic

— 18 —

2.3. Interactive Proofs

Turing machine with a read-only input tape, a read-only communication tape, a
write-only communication tape, and a write-only output tape. When two interac-
tive Turing machines are linked together in order to perform an interactive proof,
the read-only communication tape of each machine coincide with the write-only
communication tape of the other one. So, a message sent from a machine A to a
machine B is modeled by a message written on the write-only communication tape
of the machine A which is directly written on the read-only tape of the machine
B. In addition to the communication tapes, two linked interactive Turing machines
have the same read-only input tape, which corresponds to the common input of the
interactive proof.

We denote the prover by P and the verifier by V. The interaction between both
P and V with a common input x, a private input w to P, and private input y to
V is written 〈P(w),V(y)〉(x). As the name suggests, a private input to a given
player is only known by himself and is often called the auxiliary input. Usually, the
prover takes a secret as auxiliary input which allows him to prove the validity of the
statement related to the interactive proof. In some cases, the verifier is also given
an auxiliary input which may consist of a private key.

As said earlier, in an interactive proof, the prover aims at proving the validity
of a given statement and normally uses some secret information to do so. In order
to formalize the statement notion, we consider a relation R ⊆ {0, 1}∗×{0, 1}∗ with
the corresponding formal language

LR := {x | ∃w such that (x,w) ∈ R}.

In this settings, an interactive proof consists for a prover in showing to a verifier
that a common input x is in the language LR by using the corresponding witness w as
private input. At the end of the protocol, if the prover was able to answer correctly
to the challenges sent by the verifier, the latter accepts the proof. Otherwise, if
the prover fails to correctly prove the given statement, the verifier rejects the proof.
This acceptance or rejection of the verifier is expressed by outputting a bit at the
end of the interaction. This bit represents the output of the interaction as well. We
write this as

〈P(w),V(y)〉(x)→ 0 or 1,

where 1 stands for “accept” and 0 for “reject”.
We are now in a position to define an interactive proof system of membership

for the language LR. From now on, we simply write L instead of LR if a reference
to R is not required.

Definition 2.3.1. A pair of interactive machines 〈P,V〉 is called an interactive
proof system for a language L if there are two functions c, s : N → [0, 1] such that
1− c(n) > s(n) + 1/poly(n) and the following properties are satisfied.

— 19 —

2. Preliminaries in Cryptography

Efficiency. The interactive machine V is polynomial-time with respect to |x|.

Completeness. For any x ∈ L and any w such that (x,w) ∈ R, and any auxiliary
input y, we have

Pr[〈P(w),V(y)〉(x)→ 1] ≥ 1− c(|x|),
where the probability is over the random tapes of P and V.

Soundness. For any x 6∈ L, any auxiliary input y, and any interactive machine P∗

(deviating from the protocol specifications and possibly computationally unbounded)

Pr[〈P∗,V(y)〉(x)→ 1] ≤ s(|x|),

where the probability is over the random tapes of P∗ and V.

The functions c(·) and s(·) are respectively called the completeness error and
soundness error.

If the soundness property only holds against a polynomial-time (in |x|) malicious
prover, we say that 〈P(·),V(·)〉(·) is a computationally sound interactive proof or
an interactive argument [26].

Zero-Knowledge

As shown earlier, soundness property in an interactive proof prevents a malicious
prover to pass the protocol with an invalid statement, i.e., x 6∈ L. On the other
hand, Definition 2.3.1 does not guarantee anything about a malicious behaviour
of the verifier. In some practical applications such as identification protocols one
usually does not want that the prover discloses more information than the validity
of the statement. Namely, we clearly want to avoid that some malicious verifier
retrieves private information of the prover. In an identification protocol, the major
risk comes from a malicious verifier who attempts to retrieve the secret allowing the
prover to identify himself.

This motivated to introduce the notion of zero-knowledge which captures the fact
that no information should leak to the verifier except the validity of the statement.
Informally, the paradigm behind this concept is based on the simulation of the
interactive proof by the verifier himself showing that computation made by the
prover does not provide additional information to the verifier. The simulation should
work provided that the prover is honest and the statement is valid. This is in fact
not a restriction since we usually do not care about the security consequences when
both the prover and the verifier are malicious. Before introducing a formal definition,
we would like to mention that the concept of zero-knowledge was put forward and
formalized by Goldwasser, Micali, and Rackoff [75].

— 20 —

2.3. Interactive Proofs

All the messages exchanged between a prover P and a verifier V in an interactive
proof form the transcript of the protocol. We denote by View(〈P,V〉) the transcript
(random variable) of the interactive proof 〈P,V〉.
Definition 2.3.2 (Zero-Knowledge). We say that an interactive proof system 〈P,V〉
for the language LR (with corresponding relation R) is (perfect, statistical, or compu-
tational) zero-knowledge if for any probabilistic polynomial-time interactive machine
V∗ and any polynomial p, there exists a probabilistic polynomial-time algorithm B
called simulator, such that the ensembles

{View(〈P(w),V∗(y)〉(x))}(x,w)∈R, y∈{0,1}p(|x|) and {B(x, y)}(x,w)∈R, y∈{0,1}p(|x|)

are (perfectly, statistically, or computationally) indistinguishable, where B(x, y) de-
notes the random variable of B’s output with the inputs x, y.

This definition of zero-knowledge with an auxiliary input to the verifier is an
extension of the classical definition in which the verifier is only given the common
input x. The auxiliary input can be some information known by the verifier before
the beginning of the interaction such as a private key.

We present now a stronger notion of zero-knowledge which is called black-box
zero-knowledge which is satisfied if there exists a universal simulator for any verifier
having an oracle access to the verifier as a black-box, i.e., the simulator can interact
with the verifier V by feeding him with a random tape and interacting by exchanging
messages without getting access to the verifier’s internal code. More precisely, the
simulator has access to a “next-message function” which on input takes a random
tape and the first messages satisfying the specifications of the protocol (partial
transcript) and outputs the next message V would send if he was interacting with
the honest prover P. Note that this allows to reset the verifier to a previous state
(with the same random tape).

Definition 2.3.3 (Black-Box Zero-Knowledge). We say that an interactive proof
system 〈P,V〉 for the language LR (with corresponding relation R) is (perfect, sta-
tistical, or computational) black-box zero-knowledge if there exists a probabilistic
polynomial-time oracle machine B such that for every probabilistic polynomial-time
interactive machine V∗ and any polynomial p, the ensembles

{View(〈P(w),V∗(y)〉(x))}(x,w)∈R, y∈{0,1}p(|x|) and {BV∗
(x, y)}(x,w)∈R, y∈{0,1}p(|x|)

are (perfectly, statistically, or computationally) indistinguishable.

Remark 2.3.4. Our definition of black-box zero-knowledge is less “strict” than
definition given in [69] where the simulator B is not directly given the auxiliary input.
Note however that our definition remains stronger than classical zero-knowledge as
defined in Definition 2.3.2.

— 21 —

2. Preliminaries in Cryptography

As pointed out in [11], all known zero-knowledge interactive proofs prior to an
article of Barak [9] in 2001 are black-box zero-knowledge. In this way, all zero-
knowledge proofs in this work will be black-box as well. To output an indistin-
guishable transcript, the simulator B usually needs to rewind the verifier. When
the simulator does not need to do so, we call this notion (black-box) straight-line
zero-knowledge. More information about this special kind of zero-knowledge can be
found in an article of Dwork and Sahai [55].

Important questions about zero-knowledge proofs concerns the minimal number
of moves which are required to achieve different flavours of zero-knowledge. Besides
the theoretical interest raised by this question, number of moves are important in
environments with some constrained communication. Considerable results about
this issue have been developed from the introduction of zero-knowledge. In the
standard model, Barak et al. [10] proved that zero-knowledge proofs of an NP-
complete language (possibly non-black-box) requires at least 3 moves and Goldreich
and Krawczyk [71] showed that 4 moves are necessary in the black-box case for
non-trivial languages.

To overcome this limitation, the notion of zero-knowledge was extended in the
random oracle model (for more details, see Bellare and Rogaway [13]) in which the
queries to the random oracles are controlled by the simulator, i.e., it can simulate
the output of the oracles provided that the output distribution is correct. Recently,
Pass [125] proposed the notion of deniable zero-knowledge in the random oracle.
The difference with the classical zero-knowledge in the random oracle is that the
simulator is no longer allowed to simulate the output of the random oracles, but is
only able to observe the queries made by the verifier to the random oracles as well
as the corresponding answers. This actually means that the simulator’s transcript
really corresponds to the view of the verifier. In this model, Pass [125] showed that
2 moves are necessary to achieve zero-knowledge for NP and proposed a general
2-move protocol for NP which is not very convenient for practical purposes. In our
results, proofs of zero-knowledge in the random oracle will be deniable in general.

Non-interactive zero-knowledge achieves the minimal number of moves since this
term is used to designate zero-knowledge interactive proof with only one move, i.e.,
the prover releases one message to the verifier. This can be achieved in the random
oracle model and due to results of Pass [125] cannot be deniable. Usually, non-
interactive zero-knowledge is achieved in a different (less idealized) model called
common reference string model where the players have access to a random string
(often a public key). In this model, the simulator is allowed to simulate the common
reference string with respect to its predefined distribution. Non-interactive zero-
knowledge was originally defined in a less idealized model called the common random
string model, where the string is uniformly distributed. More information about the
original definition of non-interactive zero-knowledge is given in the article of Blum,
Feldman, and Micali [18].

— 22 —

2.3. Interactive Proofs

Non-Transferability

We introduce the concept of non-transferability which will be particularly useful for
undeniable signatures and designated confirmer signatures. We define this notion in
the context of interactive proofs where the verifier is associated with a pair of keys
(KV

p ,KV
s) depending on a security parameter k ∈ N and generated by a probabilistic

polynomial time algorithm SetupV, i.e.,

(KV
p ,KV

s)← SetupV(1k).

We assume furthermore that the verifier’s public key was transmitted to the prover
in an authenticated way.

Non-transferability aims at preventing from a malicious verifier V∗ (associated
with a known public key) to convince another party of the validity of the statement
proven by the prover. Note that zero-knowledge does not automatically prevent from
this, since V∗ learns anyway that the statement is valid, i.e., that a given string x
lies in a formal language. A generic way to transfer a proof may be achieved if V∗

forwards messages generated by a hidden verifier Ṽ to the prover P. In this way,
V∗ only stays in the middle between P and Ṽ and the prover does not notice that
he is actually convincing Ṽ of the validity of the proven statement. In the context
of language proof of membership, we define this notion as follows.

Definition 2.3.5. Let consider an interactive proof system 〈P,V〉 for the language
LR, where a random generated pair of keys

(KV
p ,KV

s)← SetupV(1k)

is associated with V such that KV
p is in the common input and KV

s is the verifier’s
auxiliary input. We say that 〈P,V〉 is (perfect, statistical, or computational) non-
transferable if there exists a probabilistic polynomial-time interactive machine B
with input KV

s such that for any probabilistic polynomial-time interactive machine

Ṽ (with or without KV
s), both transcript ensembles

{View(〈P(w), Ṽ〉(x,KV
p))}(x,w),k and {View(〈B(KV

s), Ṽ〉(x,KV
p))}(x,w),k

are (perfectly, statistically, or computationally) indistinguishable, and where B is
given a bit telling whether x ∈ LR.

Note that contrary to zero-knowledge, B does not model the view of the verifier.
So, in the random oracle model, B does not see any queries made by Ṽ. The role of
B is actually to show that the verifier V∗ with KV

s can actually replace the prover.

This implies that Ṽ cannot determine whether V∗ is interacting with the prover or
not.

— 23 —

Chapter 3
Overview on Undeniable and Designated
Confirmer Signatures

3.1 Signatures with Online Verification

The main goal of digital signatures is to bind some data with an entity, i.e., for-
mally with a given public key. What makes public-key cryptography techniques
much more attractive over the conventional one, is mainly due to the easier way of
managing keys through a broadcast of the public key. In the context of signatures,
this paradigm makes signatures easily verifiable by basically anybody. Though this
property called universal verifiability is usually very convenient, it might lead to un-
desirable consequences, in particular when sensitive or private information is signed.
For instance, a compromising certified (with a signature) document signed by a per-
sonality might be easily spread in newspapers or Internet. This motivates to cope
with privacy problems for certain applications of digital signatures.

To keep advantage of the key management offered by public-key techniques but
in order to avoid universal verifiability, Chaum and van Antwerpen [40] came up
with a new kind of signatures called undeniable signatures for which the recipient
needs to participate in an interactive protocol with the signer in order to verify the
validity of a signature. In this way, the signer has a control on his signatures spread
by verifying signatures only to concerned or authorized person. To prevent from
a malicious signer who would claim that he did not sign a contract, a mechanism
allows the signer to prove interactively that a signature is invalid. In case of dispute,
legal means can be used to compel a non cooperating signer to prove the invalidity
of a signature. This ensures that a signer cannot repudiate his signatures, since this
one has the possibility to prove invalidity of an invalid signature.

In addition to a setup algorithm for generating keys and a signing algorithm,
an undeniable signature scheme is composed of two verification protocols called

3. Overview on Undeniable and Designated Confirmer Signatures

respectively the confirmation and denial protocols. The former is used to prove that
a valid signature is valid, while the later is used to prove that an invalid signature is
indeed invalid. Note that a failure of the signer in the confirmation protocol does not
imply that the signature is invalid, but may simply come from a lack of cooperation
of the signer.

Undeniable signatures clearly offer a better privacy for the signer, but the recip-
ient of the signature looses in terms of guarantee from the signer. For instance, if
the signer becomes unavailable, the recipient cannot make use of the signature. In
order to give a greater guarantee to the recipient that the he will be able to ver-
ify a signature at any time, Chaum [38] proposed in 1994 the notion of designated
confirmer signatures. Such a signature works like an undeniable signature with the
main difference that the verification is shifted to a third party called the confirmer.
This one is designated at the time the signature is generated and is assumed to
cooperate when signature verifications are requested. However, the recipient does
not trust the confirmer completely in the sense that this one really has to prove
the validity or invalidity of a signature, i.e., the recipient will not accept a simple
acknowledgment of the validity or invalidity of a requested signature.

Online Versus Offline Security

As explained above, the fundamental difference between classical digital signatures
and undeniable signatures (or also designated confirmer signatures) lies in the verifi-
cation which is done offline in the former case and online in the later case. We briefly
explain why these two different kinds of verification imply different levels of security.
We consider generic attacks against a classical digital signature scheme and an un-
deniable one. A generic attack to forge a signature of a given message would simply
consist in checking all possible signatures with the verification algorithm until this
one outputs 1. It is important to note that the adversary can perform much more
verifications for the classical signature than for the undeniable signature. Namely,
in the latter the adversary needs to have an online access to the signer in order to
perform the verification. This requires much more time and the signer can easily
limit the number of verifications a given verifier is allowed to perform. This dis-
cussion shows that a classical signature cannot be smaller than a certain threshold,
since an adversary cannot be limited in the context of classical signatures. Usually,
we require an offline security of about 280, which means that a classical signature
cannot be smaller than 80 bits. In contrast, an undeniable signature may potentially
have a size of 20 or 30 bits if the number of verifications is strongly limited.

— 26 —

3.2. Definitions

3.2 Definitions

3.2.1 Undeniable Signatures

We consider two players who are the signer (S) and the verifier (V). Let k ∈ N be
a security parameter, M be the message space and Σ be the signature space. An
undeniable signature scheme is composed of the four following algorithms.

Setup The setup is composed of probabilistic polynomial time algorithms SetupS

and SetupV producing the signer’s key pair (KS
p ,KS

s) ← SetupS(1k) and the

verifier’s key pair (KV
p ,KV

s)← SetupV(1k). We set KS := (KS
p ,KS

s) and KV :=
(KV

p ,KV
s).

Furthermore, we assume the existence of a public-key infrastructure allowing
to authenticate the public keys of the different players.

Sign Let m ∈ M be a message to sign. On the input of the signer’s secret key
KS

s , the (probabilistic) polynomial time algorithm Sign generates a signature
σ ← Sign(m,KS

s) of m (which lies in Σ).

Confirm Let (m,σ) ∈M×Σ be a supposedly valid message-signature pair. Confirm
is an interactive protocol between S and V i.e., a pair of interactive probabilis-
tic polynomial time algorithms ConfirmS and ConfirmV such that m, σ, KS

p ,
KV

p is input of both, KS
s is the auxiliary input of ConfirmS, KV

s is the auxiliary
input of ConfirmV. At the end of the protocol, ConfirmV outputs a boolean
value which tells whether σ is accepted as a valid signature of m.

Deny Let (m,σ′) ∈M×Σ be an alleged invalid message-signature pair. Deny is an
interactive protocol between S and V, i.e., a pair of interactive probabilistic
polynomial time algorithms DenyS and DenyV such that m, σ′, KS

p , KV
p , is

input of both, KS
s is the auxiliary input of DenyS, KV

s is the auxiliary input
of DenyV. At the end of the protocol, DenyV outputs a boolean value which
tells whether σ′ is accepted as an invalid signature.

In addition to this, we provide a definition related to the validity of a given
message-signature pair with respect to a key pair KS = (KS

p ,KS
s).

Definition 3.2.1. Let (m,σ) ∈ M × Σ be a message-signature pair and KS a
given key pair which was generated by SetupS. We say that the pair (m,σ) is valid
with respect to KS if there exists a random tape such that Sign(m,KS

s) outputs σ.
Otherwise, we say that (m,σ) is invalid.

We point out that Setup algorithm is not often defined in the literature to produce
a pair of keys for the verifier. This will however be crucial when considering non-
transferability of the confirmation and denial protocols. In most of the articles

— 27 —

3. Overview on Undeniable and Designated Confirmer Signatures

related to this topic, the authors consider that zero-knowledge verification protocols
are sufficient for achieving non-transferability or only mention standard techniques
allowing to make them non-transferable.

We also note that the definition of an undeniable signature scheme may option-
ally contain some convertibility algorithms and related verification algorithm. An
algorithm of perfect convertibility consists in releasing some extra information by
the signer which makes all signatures universally verifiable, i.e., all signatures related
to the corresponding public key (signer) become ordinary digital signatures. Also
considered, is the concept of selective convertibility which consists in transforming a
given signature in an ordinary one. In this variant, the signer has a complete control
on the signature choice he aims to convert. Although we will mention this notion
in this thesis, we will not thoroughly deal with selective convertibility.

3.2.2 Designated Confirmer Signatures

A designated confirmer signature requires the introduction of an additional player
called the confirmer whose role is to interact with a verifier in the verification phase
of the signatures. Thus, we consider three entities which are the signer (S), the
confirmer (C) and the verifier (V). They all possess a pair of keys KU := (KU

p ,KU
s)

for U ∈ {S,C,V} which are generated by some setup algorithms. Again, we let
k ∈ N be a security parameter and denote the message space by M and the sig-
nature space by Σ. In order to keep a notation as simple as possible, the different
algorithms of a designated confirmer signature are named as for the definition of
an undeniable signature. A designated confirmer signature is composed of the four
following algorithms.

Setup The setup is composed of three probabilistic polynomial time algorithms
SetupU for U ∈ {S,C,V} producing keys KU ← SetupU(1k).
Furthermore, we assume the existence of a public-key infrastructure allowing
to authenticate the public keys of the different players.

Sign Let m ∈ M be a message. On the input of the signer’s secret key KS
s and

confirmer’s public key KC
p , the (probabilistic) polynomial time algorithm Sign

generates a signature σ ← Sign(m,KS
s ,KC

p) of m (which lies in Σ).

Confirm Let (m,σ) ∈M×Σ be a supposedly valid message-signature pair. Confirm
is an interactive protocol between C and V i.e., a pair of interactive proba-
bilistic polynomial time algorithms ConfirmC and ConfirmV such that m, σ,
KC

p , KS
p , KV

p are input of both, KC
s is the auxiliary input of ConfirmC and

KV
s is the auxiliary input of ConfirmV. At the end of the protocol, ConfirmV

outputs a boolean value which tells whether σ is accepted as a valid signature
of m.

— 28 —

3.3. Security Model

Deny Let (m,σ′) ∈M×Σ be an alleged invalid message-signature pair. Deny is an
interactive protocol between C and V i.e., a pair of interactive probabilistic
polynomial time algorithms DenyC and DenyV such that m, σ′, KC

p , KS
p , KV

p

are input of both, KC
s is the auxiliary input of DenyC and KV

s is the auxiliary
input of DenyV. At the end of the protocol, DenyV outputs a boolean value
which tells whether σ′ is accepted as an invalid signature.

The notion of validity or invalidity of a given pair (m,σ) ∈M×Σ can be defined
in a very similar way as for an undeniable signature. The only difference is that this
notion is determined with respect to both key pairs KS and KC. So, we say that a
pair (m,σ) is valid with respect to KS and KC if there exists a random tape such
that Sign(m,KS

s ,KC
p) outputs σ. Otherwise, we say that this pair is invalid.

Note also that convertibility notions of signatures can be considered in an iden-
tical manner as for the undeniable signatures. Besides, this property is commonly
encountered in some papers dedicated to designated confirmer signatures. As this
will not play a role at all in this work, we omit again details concerning convertibility
issues.

3.3 Security Model

This section is devoted to the different security notions which are required for an
undeniable and a designated confirmer signature to be secure. Due to the strong
similarity of both primitives, the security notions are almost identical except we
have to deal with an additional player (the confirmer) for designated confirmer sig-
natures. Following a natural order, we first develop the security model of undeniable
signatures. Unavoidably, our definitions are not universal since several different se-
curity models, though closely related, can be found in the literature. In general,
some notions are considered with different flavours in terms of the adversary ability
and goals to achieve in order to break the security property. In this thesis, we will
sometimes make use of different flavours for the same security property as well.

Two fundamental security notions about signature schemes with online verifica-
tions are the unforgeability and invisibility of the signatures. The former ensures
that no other party than the signer (possessing KS

s) could have generated a valid
message-signature pair with respect to KS (and optionally KC for designated con-
firmer signatures). The aim of the latter is to guarantee the privacy of the signer by
making impossible to other players to determine whether a given message-signature
is valid or not. This opposes to the universal verifiability of ordinary digital sig-
natures. Since initial motivations of undeniable signatures were to get rid of this
property, this naturally gives rise to the invisibility property.

We consider four basic security notions related to the confirmation and denial
protocols which are the completeness, the soundness, zero-knowledge, and the non-

— 29 —

3. Overview on Undeniable and Designated Confirmer Signatures

transferability. The last one ensures that a malicious verifier is not able to convince
any third party of the validity of the statement (e.g., a given message signature is
valid) proven in the protocol. The non-transferability notion may be important in
some applications where the validity of the proof itself is valuable (like for licensing
software).

Throughout this section, k will denote a security parameter related to an unde-
niable signature or designated confirmer signature. Most of the security definitions
will contain some expressions related to this parameter. In particular, terms such
as “negligible”, “non-negligible” or “polynomial” will refer to k.

3.3.1 Undeniable Signatures

Existential Unforgeability

We consider the standard security notion of existential forgery under an adaptive
chosen-message attack as defined in the seminal paper of Goldwasser, Micali, and
Rivest [76] for classical digital signatures. In this setting, the adversary has to pro-
duce a valid message-signature pair corresponding to a challenged public key using
the help of signing oracles. In the context of undeniable signatures, we additionally
give to the adversary an access to a verification oracle playing the role of the prover
in the confirmation and denial protocols.

We use the following definition which is similar to the one proposed in an article
of Kurosawa and Heng [86] considering an active adversary.

Definition 3.3.1. An undeniable signature scheme is secure against an existen-
tial forgery under an adaptive chosen-message attack if there exists no probabilistic
polynomial time algorithm F which wins the following game with a non-negligible
probability.

Gameef-cma. F receives a signer’s public key KS
p from (KS

p ,KS
s) ← SetupS(1k) and

a verifier’s key pair (KV
p ,KV

s) ← SetupV(1k). Then, F can make some queries of
its choice to the following oracles:

• a signing oracle which answers to any queried message m ∈ M a signature
σ ← Sign(m,KS

s)

• a confirmation protocol oracle which to any queried pair (m,σ) ∈ M × Σ
interacts with F playing the role of the prover in a confirmation protocol, i.e.,
the oracle implements the algorithm ConfirmS

• a denial protocol oracle which to any queried pair (m,σ) ∈ M× Σ interacts
with F playing the role of the prover in a denial protocol, i.e., the oracle
implements the algorithm DenyS

— 30 —

3.3. Security Model

All queries can be sent in any order and adaptively, but must be polynomially bounded
in k. Then, F wins the game if it outputs a valid pair (m∗, σ∗) ∈M× Σ such that
m∗ was not queried to the signing oracle.
The success probability of F in this game is denoted by Succef-cma

F .

Invisibility

We consider an active adversary who has access to some oracles and who will have
to distinguish a valid message-signature pair from a randomly picked one. We use
a similar definition as Kurosawa-Heng [86].

Definition 3.3.2. Consider first a probabilistic polynomial time algorithm D called
invisibility distinguisher and the two following games with respect to a bit b.

Gameinv-cma-b. D receives KS
p from (KS

p ,KS
s)← SetupS(1k) and a verifier’s key pair

(KV
p ,KV

s) ← SetupV(1k), it can query some chosen messages to a signing oracle
and some chosen message-signature pairs (m,σ) ∈M×Σ to some oracles running
the confirmation and denial protocols. After a given time, D chooses one message
m∗ ∈M which was not queried to the signing oracle and submits it to the challenger.
If b = 0, he sets σ∗ = Sign(m∗,KS

s). Otherwise, σ∗ is picked uniformly at random
in the signature space Σ. D receives σ∗. After that, the distinguisher can query the
signing, confirmation, and denial oracles again provided that m∗ is not a query of
the signing oracle and (m∗, σ∗) is not a query of the confirmation or denial protocols.
Finally, D outputs a guess bit b′.

We define the advantage of the distinguisher as follows

Advinv-cma
D :=

∣∣Pr
[
b′ = 1 in Gameinv-cma-1

]− Pr
[
b′ = 1 in Gameinv-cma-0

]∣∣ ,

where probabilities are over the random tapes of the involved algorithms. An un-
deniable signature scheme is said to be invisible under a chosen-message attack if
there exists no probabilistic polynomial time algorithm D such that the advantage
Advinv-cma

D is non-negligible.

Note that this definition is similar to that of Galbraith and Mao [62] except that
the distinguisher is not allowed to query m∗ to the signing oracle. The invisibil-
ity notion of Galbraith-Mao cannot be satisfied when the signature is deterministic.
Another way to define invisibility consists in considering two messages m0, m1, a sig-
nature σ = Sign(mb,KS

s) and to determine the bit b, i.e., which message was actually
signed. A definition following this manner is given in Camenisch and Michels [30].
Galbraith and Mao showed that both definitions are equivalent provided that the sig-
natures are uniformly distributed in the signature space for a uniformly distributed
message.

— 31 —

3. Overview on Undeniable and Designated Confirmer Signatures

We introduce now a weaker invisibility notion following the spirit of Camenisch-
Michels definition.

Definition 3.3.3. Consider a probabilistic polynomial time algorithm D called in-
visibility distinguisher and the two following games with respect to a bit b.

Gameinv-lkma-b. At the beginning, the game works as in Gameinv-cma-b until the chal-
lenger submits a message. After a given time (lunchtime), D does not have access to
the oracles anymore. He receives two messages m0,m1 ∈U M uniformly distributed
and a signature σ = Sign(mb,KS

s). Finally, D outputs a bit b′.

We define the advantage of the distinguisher as follows

Advinv-lkma
D :=

∣∣Pr
[
b′ = 1 in Gameinv-lkma-1

]− Pr
[
b′ = 1 in Gameinv-lkma-0

]∣∣ ,

where probabilities are over the random tapes of the involved algorithms. An undeni-
able signature scheme is said to be invisible under a lunchtime known-message attack
if there exists no probabilistic polynomial time algorithm D such that the advantage
Advinv-lkma

D is non-negligible.

Notions Related to the Confirmation and Denial Protocols

We mainly adapt security properties of interactive proofs presented in Section 2.3
for the confirmation and denial protocols. The main difference here, is that the
terms “indistinguishability”, “non-negligible” refer to the security parameter k and
that some key pairs for both the prover and verifier are generated. The security
properties of the confirmation (resp. denial) protocol are given in the following
definition.

An execution of the confirmation (resp. denial) protocol will be denoted by
ConfirmS,V(?) (resp. DenyS,V(?)), where ? is the common input of the players.

Definition 3.3.4. Let consider an undeniable signature scheme defined according to
Subsection 3.2.1. The different security notions such as completeness, soundness,
zero-knowledge, and non-transferability of the confirmation (resp. denial) protocol
hold if the following respective definitions are satisfied.

Completeness. Given random key pairs generated by

(KS
p ,KS

s)← SetupS(1k), (KV
p ,KV

s)← SetupV(1k),

for any valid (resp. invalid) message-signature pair (m,σ) ∈M× Σ, the confirma-
tion (resp. denial) protocol ConfirmS,V(m,σ,KS

p ,KV
p) (resp. DenyS,V(m,σ,KS

p ,KV
p))

outputs 1 with probability 1 when S and V correctly follow all steps of the protocol.
The probability is taken over the random tapes of the different involved algorithms.

— 32 —

3.3. Security Model

Soundness. Given random key pairs generated by

(KS
p ,KS

s)← SetupS(1k), (KV
p ,KV

s)← SetupV(1k),

for any invalid (resp. valid) message-signature pair (m,σ) ∈M×Σ and any cheating
signer S∗ (modeled as a probabilistic polynomial time interactive machine with ac-
cess to KS

s), the probability that the confirmation protocol ConfirmS∗,V(m, σ,KS
p ,KV

p)
(resp. denial protocol DenyS∗,V(m,σ,KS

p ,KV
p)) outputs 1 is negligible with respect to

the size of k.
The success probability of S∗ is denoted by Succsd-con

S∗ (resp. Succsd-den
S∗).

Black-Box Zero-Knowledge. Let us consider some random key pairs generated
as follows

(KS
p ,KS

s)← SetupS(1k), (KV
p ,KV

s)← SetupV(1k).

The confirmation (resp. denial) protocol is black-box zero-knowledge if there exists
a probabilistic polynomial time oracle machine B called simulator such that for any
probabilistic polynomial cheating verifier V∗ (with or without KV

s) and any valid
(resp. invalid) pair (m,σ) ∈ M × Σ, BV∗

outputs a transcript (random vari-
able indexed by k) which is indistinguishable from the transcript of the protocol
ConfirmS,V∗(m,σ,KS

p ,KV
p) (resp. DenyS,V∗(m,σ,KS

p ,KV
p)), where S is the honest

signer. We assume that B and V∗ share the same information (e.g., KV
s if any).

Namely, when V∗ has access to some random oracles, B can see the queries (and
answers) as well. Moreover, we say that the protocol is straight-line zero-knowledge
if B does not need to rewind V∗.

Non-Transferability. Let us consider some random key pairs generated as follows

(KS
p ,KS

s)← SetupS(1k), (KV
p ,KV

s)← SetupV(1k).

The confirmation (resp. denial) protocol is non-transferable if there exists a prob-
abilistic polynomial time interactive machine B with input KV

s such that for any
computationally unbounded cheating verifier Ṽ and any pair (m,σ) ∈ M × Σ,
the transcript of ConfirmB,Ṽ(m,σ,KS

p ,KV
p) (resp. DenyB,Ṽ(m,σ,KS

p ,KV
p)) is indis-

tinguishable from that of ConfirmS,Ṽ(m,σ,KS
p ,KV

p) (resp. DenyS,Ṽ(m,σ,KS
p ,KV

p)).

When Ṽ has access to some random oracles, B does not see any queries (nor an-
swers) made to them. However, B is assumed to be given a bit telling whether (m,σ)
is valid or not.

Remark 3.3.5. Note that the soundness is also crucial for the non-repudiation of
the signatures, i.e., the signer cannot claim that a signature generated by himself
is not valid. Namely, the main role of the denial protocol is to give the possibility
for the signer to deny an invalid signature. As a consequence, the signer cannot
repudiate valid signatures if the denial protocol is sound.

— 33 —

3. Overview on Undeniable and Designated Confirmer Signatures

We note that definition of non-transferability allows to avoid some attacks in
which the verifier V∗ identified with KV

p forwards messages to the honest signer

which were generated by an hidden verifier Ṽ. Namely, our definition ensures that
V∗ with knowledge of KV

s could simulate the answer of S (without any help from
the honest signer S) so that Ṽ does not have evidence of the proof validity.

Our definition of non-transferability is similar to that proposed by Camenisch
and Michels [30] with the main difference that our version assumes that Ṽ is compu-
tationally unbounded. We can thus assume that Ṽ makes no queries to the signing
and confirmation/denial oracles. Therefore, the non-transferability of the protocols
presented below will also hold with respect to the Camenisch-Michels definition.

3.3.2 Designated Confirmer Signatures

Existential Forgery

We define this security notion in a similar way as for undeniable signatures follow-
ing the same spirit as the existential forgery under adaptive chosen-message attack
defined by Goldwasser et al. [76] for classical digital signatures. The main speci-
ficity in this context is that the adversary may be the confirmer, so that we give the
key pair KC to the adversary. A similar definition can be found in Camenisch and
Michels [30].

Definition 3.3.6. A designated confirmer signature is secure against an existen-
tial forgery under an adaptive chosen-message attack if there exists no probabilistic
polynomial time algorithm F which wins the following game with a non-negligible
probability.

Gameef-cma. F receives a signer’s public key KS
p from (KC

p ,KC
s)← SetupC(1k), and

two key pairs (KC
p ,KC

s) ← SetupC(1k) and (KV
p ,KV

s) ← SetupV(1k). Then, F can
query some chosen messages to a signing oracle. All queries can be sent adaptively
and the number of queries must be polynomially bounded in k. F wins the game if it
outputs a valid pair (m∗, σ∗) ∈ M× Σ such that m∗ was not queried to the signing
oracle.
We denote this probability of success by Succef−cma

F .

Remark 3.3.7. Note that the access to the confirmation (resp. denial) protocol
oracle is omitted here, since the adversary can easily simulate these protocols by
itself using KC

s .

Lunchtime Invisibility

Here, we present a definition which is adapted from Camenisch and Michels [30] and
which is a chosen-message version of Definition 3.3.3.

— 34 —

3.3. Security Model

Definition 3.3.8. Consider a probabilistic polynomial time algorithm D called in-
visibility distinguisher and the two following games with respect to a bit b.

Gameinv-lcma-b. D receives KC
p ,KS

p (possibly KS
s) from (KC

p ,KC
s) ← SetupC(1k),

(KS
p ,KS

s) ← SetupS(1k), and a verifier’s key pair (KV
p ,KV

s) ← SetupV(1k). He can
query some chosen messages to a signing oracle and some message-signature pairs
(m,σ) ∈M×Σ to some oracles running the confirmation and denial protocol. After
a given time (lunchtime), D does not have access to the oracles anymore. Then, he
chooses two messages m0,m1 ∈ M and submits them to a challenger. He receives
σ = Sign(mb,KS

s ,KC
p). Finally, D outputs a guess bit b′.

We define the advantage of the distinguisher as follows

Advinv-lcma
D :=

∣∣Pr
[
b′ = 1 in Gameinv-lcma-1

]− Pr
[
b′ = 1 in Gameinv-lcma-0

]∣∣ ,

where probabilities are over the random tapes of the involved algorithms. An un-
deniable signature scheme is said to be invisible under a lunchtime chosen-message
attack if there exists no probabilistic polynomial time algorithm D such that the
advantage Advinv-lcma

D is non-negligible.

Remark 3.3.9. When the signer’s secret key is given to the distinguisher, the access
to the signing oracle can be omitted.

Note that this definition is a little weaker than the definition of [30] in which D
can continue to send queries to the oracles after the selection of m0, m1.

Non-Coercibility

This notion prevents that the signer S is coerced by anybody who would like to get
a proof that a given signature was really generated by S after the signature is re-
leased. As far as the signer erases his intermediate computations, this notion can be
regarded as an extension of the invisibility property in which the adversary is given
KS

s . Indeed a signer who would keep in memory the random values needed to gen-
erate a signature could be coerced to prove later how this one was generated. Note
also that we should distinguish the non-coercibility from the receipt-freeness where
the signer would be unable to keep a proof that he really generated a given signature
even if he meant to. This extends the non-coercibility to the non-corruptibility.

Notions Related to the Confirmation and Denial Protocols

Security properties related to the confirmation and denial protocols are like for an
undeniable signature, i.e., the completeness, the soundness, zero-knowledge and the

— 35 —

3. Overview on Undeniable and Designated Confirmer Signatures

non-transferability. The definitions given in Subsection 3.3.1 directly apply except
that we replace the signer by the confirmer and that an additional key pair needs
to be considered.

3.4 Related Work

This part mainly offers a short overview of the different contributions dedicated
to undeniable signatures and designated confirmer signatures. Of course, it is not
intended to be exhaustive but we aim at recalling the most important achievements
made in these fields. Although a few results are related to both topics, we prefer
to provide separate treatments in order to make a clear distinction between the
contributions of both respective subjects.

Undeniable Signatures

Introduction of undeniable signatures dates back to 1989 with the article of Chaum
and van Antwerpen [40] presented at the CRYPTO conference. Their original mo-
tivation was to protect the signer’s privacy and argued that this property may be
particularly important in applications where commercially or personally sensitive
data are signed. Namely, using classical digital signatures in such a context may
lead to the dissemination of sensitive information verifiable by anybody due to the
universal verifiability of ordinary signatures.

One year later, Chaum [36] proposed a new version of this scheme with modified
confirmation and denial protocols satisfying zero-knowledge property. Contrary to
the previous protocols, one is then ensured that no information (except validity or
invalidity of the signature) leaks to a possible malicious verifier. In particular, a
verifier cannot convince another party that a given signature is valid by attaching
the transcript of the confirmation protocol.

The same year, Boyar et al. [23] introduced the concept of convertible undeniable
signature for which the signer can turn all the previous signature into universally
verifiable ones by releasing some additional information. They also introduce the
concept of selective convertibility and proposed a generic construction of a convert-
ible undeniable signature with selective convertibility. In addition, this construction
shows that convertible undeniable signatures exist if and only if one-way functions
exist. They furthermore developed a practical scheme based on the ElGamal sig-
nature scheme [56]. As it sometimes turns out in cryptography, this scheme was
later shown insecure in 1996 by Michels et al. [103]. More precisely, the signature
scheme becomes forgeable once the information to convert all signatures is released
by the signer. A way to repair this scheme was also developed in [103], but the
authors did not give a formal proof. Also based on ElGamal signatures, Damg̊ard

— 36 —

3.4. Related Work

and Pedersen [49] presented at Eurocrypt ’96 two provably secure schemes with con-
vertibility property. Finally, following the tradition of designing discrete logarithm
based scheme, Michels and Stadler [104] proposed a convertible undeniable signa-
ture scheme based on the Schnorr signature scheme [137] which is also suitable for
a threshold variant, i.e., where several signers share the signing ability.

First undeniable signature schemes which are not based on discrete logarithms
were developed by Gennaro et al. [65, 66] in 1997. The signature generation works
like for an RSA ordinary signature where the modulus is composed of safe primes. A
variant of this RSA based signature with a general modulus were done by Galbraith
et al. [63] and a detailed analysis of invisibility properties of RSA based signatures
were studied by Galbraith and Mao in [62].

A few years ago, topic of undeniable signatures has become quite active and sev-
eral new schemes were published. In 2004, Biehl et al. [15] used quadratic orders to
design a new scheme and Libert and Quisquater [98] introduced an identity-based
undeniable signature scheme using bilinear pairings. These ones allowed Laguil-
laumie and Vergnaud [89] to design in 2005 a scheme offering the possibility of
converting all signatures pertaining at a given period of time. Using again some
pairings, the same authors have been able to get rid of the use of random oracles
in [88].

Original scheme of Chaum [36] was further studied last few years. In 2001,
Okamoto and Pointcheval [119] introduced some “gap-problems” and showed that
the security of the Chaum’s scheme can be based on the Gap Diffie-Hellman problem.
Later, Ogata et al. [116] showed that one can actually prove the security of this
scheme using the Computational Diffie-Hellman problem. Finally, Kurosawa and
Heng [86] proposed some 3-move verification protocols which are not zero-knowledge.
They showed that unforgeability and invisibility still holds. However, their Chaum’s
scheme variant does not achieve non-transferability.

Besides the development of the design of new schemes, additional work about dif-
ferent issues related to undeniable signatures has been achieved. In 1991, Desmedt
and Yung [51] (see also some Chaum’s criticisms in [37]) presented some weaknesses
of undeniable signatures. In particular, they showed that several verifiers can be
convinced during a verification protocol, while the signer believes that he is inter-
acting only to one legitimate verifier. This may cause some problems in applications
where the verification is valuable, for instance, if this is used to check the authentic-
ity of a software to customers who paid for a license. In 1994, Jakobsson [80] showed
that similar attacks can be performed to blackmail the signer. In order to prevent
these kinds of attacks, Jakobsson et al. [81] introduced non-transferable protocols
which ensures that a verifier cannot transfer the validity/invalidity proof of a given
signature to another party during a confirmation or denial protocol. To achieve
this, they developed so-called designated verifier proofs in which the prover desig-
nate the verifier he is going to convince on a given statement. Moreover, a generic

— 37 —

3. Overview on Undeniable and Designated Confirmer Signatures

construction based on trapdoor commitments [26] is also given in this article.
Before to conclude this overview, we would like to mention a few additional

results. In 1991, Pedersen [126] developed a threshold variant of undeniable signa-
ture. The signer’s secret key is shared among several provers and the recipient of a
message can verify a signature by interacting with a subset of enough many (with
respect to the threshold) provers. Another useful contribution is due to Fujioka et
al. [61] who introduced the bi-proof concept which allows to prove in one sole pro-
tocol whether the signature is valid or invalid. So, one bi-proof protocol can replace
both the confirmation and denial protocols at the same time. Finally, Chaum et
al. [41] have investigated undeniable signatures which are unconditionally secure for
the signer, i.e., even against a computationally unbounded forger, the signer will be
able to deny forged signatures.

For another overview on the development of undeniable signatures, we refer to
the PhD thesis of Laguillaumie [87].

Designated Confirmer Signatures

Designated confirmer signatures were introduced in 1994 in an article of Chaum [38].
The main motivation was that undeniable signatures do not offer an ideal solution
when the signer may become unavailable. In his original article, Chaum proposed
a scheme with verification protocols similar to those of his undeniable signature
scheme [36]. Yet, he did not provide any formal proof of his scheme nor a security
model for a designated confirmer signature. The same year, Okamoto [118] presented
a formal security model for this cryptographic primitive and proposed a generic
way of constructing a designated confirmer signature. This allowed him to prove
that a primitive equivalent to public-key encryption is required to achieve a secure
designated confirmer signature. More practical results are also given in his article,
where he developed practical constructions based on 3-move identification protocols
without any formal security proof.

In 1998, Michels and Stalder [105] pointed out that practical constructions of
Okamoto succumb under a forgery attack if the adversary is given the confirmer’s
secret key. A countermeasure is proposed without a security proof. They intro-
duced the notion of confirmer commitments allowing to construct designated con-
firmer signatures. However, two years later Camenisch and Michels [30] showed
that adaptive attacks can break the invisibility of this scheme as well as that of
Chaum [38]. They also proposed a construction based on verifiable encryption but
with an inefficient denial protocol. The efficiency has been strongly improved and
made practical by Camenisch and Shoup in [31]. Recently, Goldwasser and Wais-
bard [77] developed a general construction without random oracles using general
(inefficient) zero-knowledge proofs. Finally, Gentry et al. [67] used commitments
and techniques of Camenisch and Shoup to design a scheme with some practical

— 38 —

3.4. Related Work

confirmation and denial protocols without making use of random oracles.

— 39 —

Chapter 4
MOVA Undeniable Signature

Up until now, undeniable signature schemes did not fully exploit online security
properties towards the design of schemes offering very short signatures. One of the
main contributions of this thesis is to remedy to this situation. To this goal, we de-
velop a very general framework based on the sole notion of the interpolation of group
homomorphisms. Based on this, we define a decisional and computational problem,
which generalize several fundamental problems related to public-key cryptography.
Among them, we find the decision and computational Diffie-Hellman problems as
well as the quadratic residuosity problem.

The interest of this new perspective to undeniable signatures is twofold. First,
group homomorphisms allow to express the well-known Chaum’s undeniable sig-
nature [36] and the RSA undeniable signature of Gennaro et al. [66] in a unified
formalism. Secondly, our technique allows to develop very short signatures in a
quite natural way, namely by instantiating our scheme with group homomorphisms
with a range group of small size.

In what follows, we introduce the concept of interpolation of group homomor-
phisms and related problems. We then dedicate a part of this chapter to deal with
interactive proof protocols related to the interpolation of group homomorphisms. In
particular, we consider two protocols in which the prover proves to a verifier that
a given set of points interpolates (resp. does not interpolate) in a group homo-
morphism. From this, we develop the MOVA undeniable signature scheme whose
confirmation and denial protocols are directly based on the previously defined pro-
tocols. Finally, we develop the security properties of MOVA by providing security
reductions to some supposedly hard problems. These results allow to quantify dif-
ferent parameters of the scheme given the security level of the different security
properties.

4. MOVA Undeniable Signature

4.1 Interpolation of Group Homomorphisms

4.1.1 Problem Definitions

In what follows, we will mainly deal with finite Abelian groups written in an additive
way. In this case, the following notation for a scalar multiplication will apply.

Notation. For a non negative integer k and an element g of an Abelian group, kg
will denote the element

g + g + · · ·+ g︸ ︷︷ ︸
k times

.

If k is negative, kg denotes the element −(−k)g.

The concept of group homomorphism interpolation is defined below.

Definition 4.1.1. Let G, H be two Abelian groups and S a subset of G×H written
in the form S := {(x1, y1), . . . , (xs, ys)}.

1. We say that the set of points S interpolates in a group homomorphism if
there exists a group homomorphism f : G −→ H such that f(xi) = yi for
i = 1, . . . , s.

2. We say that a set of points B ⊆ G × H interpolates in a group homomor-
phism with another set of points A ⊆ G×H if A ∪B interpolates in a group
homomorphism.

Group Homomorphism Interpolation Problem

We state here the Group Homomorphism Interpolation problem (GHI problem) and
its corresponding decisional problem (GHID problem).

n-S-GHI Problem (n-S-Group Homomorphism Interpolation Problem)

Parameters: Two Abelian groups G and H, a set S ⊆ G × H of s points, and a
positive integer n.

Instance Generation: n elements x1, . . . , xn picked uniformly at random in G.

Problem: Find y1, . . . , yn ∈ H such that {(x1, y1), . . . , (xn, yn)} interpolates with
S in a group homomorphism.

n-S-GHID Problem (n-S-GHI Decisional Problem)

Parameters: Two Abelian groups G and H, a set S ⊆ G × H of s points, and a
positive integer n.

— 42 —

4.1. Interpolation of Group Homomorphisms

Instance Generation: The instance T is generated according to one of the two
following ways and is denoted T0 or T1 respectively. T0 is a set of n points
{(x1, y1), . . . , (xn, yn)} ∈ (G × H)n picked uniformly at random such that it
interpolates with S in a group homomorphism. T1 is picked uniformly at
random in (G×H)n.

Problem: Decide whether the instance T is of type T0 or T1.

Remark 4.1.2. We point out, the distribution T0 does not seem easy to produce in
general. However, when the set of points uniquely determines a homomorphism f ,
one can generate T0 by picking the xi’s uniformly at random and setting yi := f(xi)
for i = 1, . . . , s.

In practice, we consider the n-S-GHI and n-S-GHID problems for sets S which
interpolate in a unique group homomorphism. Hence, S defines a homomorphism.
The n-S-GHI problem consists in computing it on n elements. The n-S-GHID
problem consists in deciding whether all points of T lie in its graph. From now on,
we always assume that this homomorphism is unique.

Additionally, we define the special S-GHID problem which is defined as for n-
S-GHID with no input and the problem consists in deciding whether S interpolates
in a group homomorphism.

Note also that GHI and GHID are some generic problems and that parameters
G, H, S can be of full diversity since no restriction about their form is made a priori.
Later, when more practical aspects will be required, some precise specifications of
these parameters will be presented leading to different possible instantiations.

Related Computational Problems

We also consider the following (non-probabilistic) problems.

d-MGGD Problem (Modular Group Generation Decisional Problem)

Parameters: An Abelian group G, a positive integer d.

Instance: A set of values S1 = {x1, . . . , xs} ⊆ G.

Problem: Does S1 modulo dG span G/dG?

(d, S1)-MSR Problem (Modular System Representation Problem)

Parameters: An Abelian group G, a set S1 = {x1, . . . , xs} ⊆ G, and a positive
integer d.

Instance: An element x ∈ G.

— 43 —

4. MOVA Undeniable Signature

Problem: Find a1, . . . , as ∈ Z such that x ∈ a1x1 + · · ·+ asxs + dG. If no solution
exists, output ⊥.

d-Root Problem (dth Root Problem)

Parameters: An Abelian group G and a positive integer d.

Instance: An element x ∈ dG.

Problem: Find r ∈ G such that x = dr.

Problem Solvability

The hardness of the different above problems against a given adversary is measured
by the success probability of this one. As usual, the adversary is formalized by a
probabilistic polynomial time algorithm (Turing machine). The success probability
of such an adversary A of solving a problem P (with some specified parameters and
possibly an instance) is denoted

SuccPA.

For instance, if we take a 1-S-GHI problem such that S defines a unique group
homomorphism f , we have

Succ1-S-GHI
A = Pr

x,$
[y = f(x) | x←U G; y ← A(x; $)],

where $ denotes the random tape of A.
When the underlying problem P is decisional, we usually call the adversary

“distinguisher” and denotes him by D. We denote the input of the problem as x
and the goal of D is to decide whether x was drawn according to the distribution
D0 or D1. In the decisional setting, we prefer to consider the following measure of
success

AdvPD :=

∣∣∣∣Pr
x,$

[0← D(x; $) | x← D0]− Pr
x,$

[0← D(x; $) | x← D1]

∣∣∣∣
called the advantage of the distinguisher D and where $ denotes the random tape
of D. The motivation to consider the advantage instead of the probability of suc-
cess is based on the fact that a trivial distinguisher can always solve a decisional
problem with probability 1/2. The advantage of such algorithms is 0 which is a far
more appropriate measure. If the input x is picked according to D0 and D1 with a
probability 1/2, the advantage is equal to

AdvPD =

∣∣∣∣2 · Pr
x,$,b

[b← D(x; $) | b←U {0, 1}; x← Db]− 1

∣∣∣∣ .

Throughout this thesis, we will consider some instances of the n-S-GHI and
n-S-GHID problems which are assumed to fulfil the following assumption.

— 44 —

4.1. Interpolation of Group Homomorphisms

Assumption. For any probabilistic algorithms A and D running in polynomial
time with respect to the instance size, the functions

Succn-S-GHI
A and Advn-S-GHID

D ,

are negligible with respect to the instance size.

4.1.2 Preliminaries

In this subsection, we give some technical results related to the interpolation of
group homomorphisms. The importance of the presented material will become clear
in the subsequent sections. We first present some properties a set of points S =
{(x1, y1), . . . , (xs, ys)} ⊆ G × H should satisfy in order to interpolate in a unique
group homomorphism. We begin by proposing a criterion on the xi’s such that we
are ensured that at most one group homomorphism exists. Then, we present an
additional property involving the elements yi’s which guarantees the existence of
such a homomorphism.

Uniqueness of the Interpolation

Lemma 4.1.3. Let G, H be two finite Abelian groups. We denote d and λ the
order and the exponent of H respectively. Let x1, . . . , xs ∈ G which span a subgroup
denoted by G′. The following properties are equivalent. In this case, we say that
x1, . . . , xs H-generate G.

1. For any elements y1, . . . , ys ∈ H, there exists at most one group homomor-
phism f : G −→ H such that f(xi) = yi for all i = 1, . . . , s.

2. There exists a unique group homomorphism ϕ : G −→ H such that ϕ(xi) = 0
for i = 1, . . . , s, namely ϕ = 0.

3. The set Hom(G/G′, H) of all group homomorphisms from G/G′ to H is re-
stricted to {0}.

4. gcd(#(G/G′), d) = 1.

5. G′ + dG = G.

6. G′ + λG = G.

7. The cosets x1 + dG, . . . , xs + dG span G/dG.

8. The cosets x1 + λG, . . . , xs + λG span G/λG.

— 45 —

4. MOVA Undeniable Signature

Proof. 1 ⇒ 2. This directly follows by choosing yi = 0 for all i = 1, . . . , s.

2 ⇒ 1. Assume that there exist two group homomorphisms f1, f2 from G to H
such that f1(xi) = f2(xi) = yi for all i = 1, . . . , s. Then, by assertion 2, we deduce
that the group homomorphism f1 − f2 must be equal to the homomorphism 0.

2 ⇒ 3. Suppose that there exists a homomorphism ϕ̄ : G/G′ → H which is not
equal to 0. Let πG′ : G → G/G′ denote the canonical projection. We define the
homomorphism ϕ := ϕ̄ ◦ πG′ from G to H. By definition, πG′(xi) = 0 and therefore
ϕ(xi) = 0 for any i = 1, . . . , s. Moreover, since πG′ is onto and ϕ̄ is not trivial, ϕ
must be different from 0, which contradicts the assertion 2.

3 ⇒ 4. Suppose the existence of a common prime factor p of #(G/G′) and d. Then,
from the structure of Abelian groups (see Appendix A.1), G/G′ and H must both
possess one cyclic subgroup U and V respectively of order p. Let λ′ denote the
exponent of the group G/G′. By the structure of Abelian groups, we can choose U
of the form λ′/p · (G/G′). Hence, we have a group homomorphism

ϕ : G/G′ −→ U

x 7−→ λ′
p
x

which is onto. So, we can define a non trivial homomorphism which is the compo-
sition of ϕ and the isomorphism between U and V . This contradicts 3.

4 ⇒ 5. Let x ∈ G and k := ord(x mod G′) be the order of x mod G′ in the quotient
group G/G′. By the assertion 4, d must be invertible modulo k. Let m ∈ Z such
that m · d ≡ 1 (mod k). We have m · d · x ≡ x (mod G′). Hence, x− d(m · x) ∈ G′

and therefore x ∈ G′ + dG.

5 ⇒ 2. Let ϕ ∈ Hom(G,H) such that ϕ|G′ = 0 and x ∈ G. By assertion 5, we can
write x = a1x1 + · · ·+ asxs + dr for some integers a1, . . . , as and an element r ∈ G.
Thus, ϕ(x) = dϕ(r) = 0. This holds for any x ∈ G, i.e., ϕ = 0.

5 ⇒ 6. This directly follows from dG ⊆ λG, since λ|d.

6 ⇒ 2. Let ϕ ∈ Hom(G,H) such that ϕ|G′ = 0 and x ∈ G. By assertion 6 we can
write x = a1x1 + · · ·+ asxs + λr for some integers a1, . . . , as and an element r ∈ G.
Thus, ϕ(x) = λϕ(r) = 0. This holds for any x ∈ G, i.e., ϕ = 0.

5 ⇔ 7. This follows from G′ + dG = G⇔ {x′ + dG | x′ ∈ G′} = G/dG.

6 ⇔ 8. This follows from G′ + λG = G⇔ {x′ + λG | x′ ∈ G′} = G/λG.

Remark 4.1.4. Note that the criteria 4-8 suggest that H is only involved by the
prime factors of its order. Later, the smallest prime factor p will play an important
role. Note also that if G = H, these criteria mean that x1, . . . , xs generate G.
Furthermore, from the assertion 7, we see that a positive answer to the d-MGGD
problem for S1 = {x1, . . . , xs} is equivalent to say that x1, . . . , xs H-generate G.

— 46 —

4.1. Interpolation of Group Homomorphisms

Expert Group Knowledge. The assertion 5 states that any x ∈ G can be written
in the form x = dr + a1x1 + · · · + asxs for some coefficients a1, . . . , as ∈ Zd and
r ∈ G. Such a representation of x can be always found when one is able to solve
both (d, S1)-MSR and d-Root problems perfectly. We say that one has an expert
group knowledge of G with the set S1 = {x1, . . . , xs}, if one is able to find such a
representation for any x ∈ G.

Existence of the Interpolation

Here is a condition allowing to determine whether a set of points interpolates in
a group homomorphism. The following result assumed that the G-coordinates of
this set of points H-generate G so that the group homomorphism is unique when it
exists.

Lemma 4.1.5. Let G, H be two finite Abelian groups. We denote d the order of H.
Let x1, . . . , xs ∈ G which H-generate G. The set S = {(x1, y1), . . . , (xs, ys)} ⊆ G×H
interpolates in a group homomorphism if and only if for any a1, . . . , as ∈ Z such that

a1x1 + · · ·+ asxs ∈ dG,

we have
a1y1 + · · ·+ asys = 0.

Proof. “⇒”: By assumption, there exists a homomorphism f : G → H such that
f(xi) = yi for i = 1, . . . , s. Since dG lies in the kernel of f , we have

f(a1x1 + · · ·+ asxs) = a1y1 + · · ·+ asys = 0,

whenever a1x1 + · · ·+ asxs ∈ dG.

“⇐”. By the assertion 5 of Lemma 4.1.3, we know that any element x ∈ G can be
written in the form x = dr + a1x1 + · · · + asxs for some integers a1, . . . , as and an
element r ∈ G. We now define a function f : G→ H defined by

f(dr + a1x1 + · · ·+ asxs) := a1y1 + · · ·+ asys (4.1)

for any a1, . . . , as ∈ Z and r ∈ G. It remains to prove that f is well-defined on G
and that it is homomorphic. Assume that an element x ∈ G admits two different
representations, i.e.,

x = dr + a1x1 + · · ·+ asxs = dr′ + a′1x1 + · · ·+ a′sxs.

By assumption, we must have

(a1 − a′1)y1 + · · ·+ (as − a′s)y
′
s = 0,

— 47 —

4. MOVA Undeniable Signature

and therefore

f(dr + a1x1 + · · ·+ asxs) = f(dr′ + a′1x1 + · · ·+ a′sxs).

The homomorphic property directly follows from the linearity of the right hand side
of (4.1).

Remark 4.1.6. Note that we can replace d by the exponent λ of the group H in
Lemma 4.1.5.

Remark 4.1.7. Lemma 4.1.5 does not hold anymore if we relax the assumption
stating that x1, . . . , xs H-generate G. The following example illustrates this state-
ment. Let G = Z27, H = Z9 ⊕ Z3, x1 = 3, and y1 = (0, 1). We have d = 27 and
λ = 9. For any group homomorphism f : Z27 → Z9 ⊕ Z3, we have f(x1) = 3 · f(1)
showing that f(x1) cannot be equal to y1 since the second component should vanish.
However, a1x1 ∈ 27G implies that a1 is a multiple of 9, thus a1y1 = 0. This shows
that Lemma 4.1.5 does not apply in this case. Note also that replacing d by λ in
this example would lead to the same conclusion.

By the above remark, relaxing the assumption of the H-generation of G in
Lemma 4.1.5 can be achieved only if we add some assumptions on the groups G
and H. In this thesis, we usually do not care about situations where more than
one group homomorphism can exist. We will always assume that the x1, . . . , xs H-
generate G. So, we prefer to consider the above Lemma 4.1.5 with no restriction on
the groups G and H.

Examples of GHI and GHID Problems

We can often meet the GHI and GHID problems in cryptography as the following
examples suggest. Here, we exclusively consider 1-GHI and 1-GHID variants.

Example 1. We take a cyclic group G of order q, H = Zq, and a generator g of G.
The set S = {(g, 1)} interpolates in a unique group homomorphism, and the GHI
problem is exactly the discrete logarithm problem.

Example 2. We take a cyclic group G = H of order q, and a generator g of G.
For any a ∈ Zq, S = {(g, ag)} interpolates in a unique group homomorphism: the
exponentiation to the power a. The GHI and GHID problems correspond to the
Diffie-Hellman problem [53] and the decisional Diffie-Hellman problem when S is
refreshed for each instance with an element a ∈U Zq picked uniformly at random.

Example 3. Let n = pq such that p, q are different odd primes and H = {−1, +1}.
We let x1, x2 ∈ Z∗n be such that x1 is a quadratic residue modulo p and not modulo q,
and that x2 is a quadratic residue modulo q, and not modulo p. We notice that

— 48 —

4.1. Interpolation of Group Homomorphisms

S = {(x1, 1), (x2,−1)} interpolates in a unique group homomorphism which is the
Legendre symbol (·/p). Since it is easy to compute (·/n), the quadratic residuosity
problem [73] with the information x1 and x2 is equivalent to the GHI and GHID
problems restricted to the inputs x ∈ Z∗n such that (x/n) = 1.

In Chapter 5, we will deal with characters on Z∗n, which are a natural general-
ization of the Legendre symbol.

Example 4. Here, we consider the well known RSA cryptosystem [131]. Let n = pq
be an RSA modulus and G = H = Z∗n. Let f : Z∗n → Z∗n be defined by f(x) =
xe mod n for an exponent e such that gcd(e, ϕ(n)) = 1. Given enough many pairs
(xe

i mod n, xi) ∈ Z∗n × Z∗n, i = 1, . . . , s, such that the first coordinates generate Z∗n,
the RSA decryption problem corresponds to the GHI problem with S composed of
the above pairs.

Example 5. We show here how we can apply the GHI problem to the Bilinear Diffie-
Hellman Problem (BDHP). This problem was used in the seminal paper of Boneh
and Franklin [20, 21] to propose an identity-based encryption scheme based on it.
Let ê : G1×G1 → G2 be a bilinear, non-degenerate and computable mapping, where
G1 and G2 are cyclic groups of a large prime order p. Let P be a generator of G1, we
can state the BDHP as follows: given three random elements aP , bP and cP ∈ G1,
compute ê(P, P)abc. (G1 resp. G2 is written additively resp. multiplicatively.)
BDHP is equivalent to GHI problem with the set S = {(P, ê(aP, bP))} and x1 = cP
when S is refreshed for each instance with some a and b picked uniformly at random
in Zp.

Example 6. Let consider the Paillier’s trapdoor function [123] that maps an element
(x, y) ∈ Zn × Z∗n to the element gx · yn mod n2 of Z∗n2 , with g an element of Z∗n2 of
order n. For such a g, the Paillier trapdoor function is an isomorphism. Thus,
assuming we have s pairs of plaintext/ciphertext that generate Zn × Z∗n resp. Z∗n2 ,
the decryption problem of a challenged ciphertext corresponds to the GHI problem
with G = Z∗n2 and H = Zn×Z∗n. This application of GHI problem to the decryption
problem can be adapted to every homomorphic trapdoor function.

Note that Examples 2,3,4,5,6 include trapdoors in order to interpolate the group
homomorphism. Furthermore, Example 3 includes a trapdoor in order to solve the
MSR problem. Also note that the order d of H is publicly known in Examples 1,2,3,5.
It is further quite small in Example 3. In what follows we focus on publicly known
d and on trapdoor homomorphisms. We will also consider the following example
inspired by [3].

Example 7. Let n = pq such that p = rd + 1 and q are prime, gcd(r, d) = 1,
gcd(q − 1, d) = 1, with d small prime. We take G = Z∗n and H = Zd. We can
easily compute a group homomorphism by first raising to the power r(q − 1) then
computing a discrete logarithm in a small cyclic subgroup of order d.

— 49 —

4. MOVA Undeniable Signature

Sampling G uniformly

We first state a basic but useful lemma.

Lemma 4.1.8. Let f : G→ H be a surjective group homomorphism from the group
G to the group H. Then, f is balanced, i.e.,

#f−1(y) = #Ker(f) for any y ∈ H.

Proof. Let x, x′ ∈ G and y := f(x). The lemma follows by noticing that

f(x′) = y if and only if x′ ∈ x + Ker(f).

We finally provide a useful lemma to sample group elements.

Lemma 4.1.9. Let G, H, d be defined as in Lemma 4.1.5. Let x1, . . . , xs ∈ G which
H-generate G. The following mapping from G× Zs

d to G is balanced

g : (r, a1, . . . , as) 7−→ dr + a1x1 + · · ·+ asxs. (4.2)

Proof. Let n be the order of G. Let h : G × Zs
nd → G be a function defined by

h(r, a1, . . . , as) := dr + a1x1 + · · · + asxs. Obviously, h is a homomorphism. It is
onto due to the assertion 5 of Lemma 4.1.3. Hence, it is balanced by Lemma 4.1.8.
Let ϕ : G× Zs

nd → G× Zs
d be a function defined by

ϕ(r, a1, . . . , as) := (r + q1x1 + · · ·+ qsxs, a1 mod d, . . . , as mod d),

where ai − (ai mod d) = dqi, for i = 1, . . . , s. We have g ◦ ϕ = h. We note that ϕ is
balanced onto G× Zs

d since

ϕ−1(r, a1, . . . , as) = {(r−q1x1−· · ·−qsxs, a1 +dq1, . . . , as +dqs) | (q1, . . . , qs) ∈ Zs
n}.

If #g−1(x) = m, we have mns = #ϕ−1 (g−1(x)) = #h−1(x) = (dn)s. Hence, m = ds

does not depend on x, so g is balanced.

Remark 4.1.10. We can prove a variant of Lemma 4.1.9, where d is replaced by
the exponent λ of the group H.

— 50 —

4.1. Interpolation of Group Homomorphisms

Sampling Representations with Expert Group Knowledge

Note that the expert group knowledge corresponds to the ability of finding an ele-
ment of the set g−1(x) for any x ∈ G. We show here that this ability even allows to
pick an element in g−1(x) uniformly at random for any x ∈ G. At first, we remark
that two representations (r, a1, . . . , as), (r′, a′1, . . . , a

′
s) represent the same element x

if and only if we have

d(r − r′) + (a1 − a′1)x1 + · · ·+ (as − a′s)xs = 0.

In other words, two representations lie in the same set g−1(x) for a given x if and
only if they difference lie in g−1(0). This shows that sampling elements of g−1(x)
uniformly at random can be achieved by finding any representation of x (expert
group knowledge) and adding this one with a representation of the neutral element
0 picked uniformly at random.

We now explain how to pick some representation (r, a1, . . . , as) uniformly at
random in g−1(0), i.e., such that dr + a1x1 + · · · + asxs = 0. We pick a tuple
(r′, a′1, . . . , a

′
s) ∈U G× Zs

d uniformly at random and compute

x′ := dr′ + a′1x1 + · · ·+ a′sxs. (4.3)

We apply our expert group knowledge and retrieve a tuple (r′′, a′′1, . . . , a
′′
s) ∈ g−1(x′).

We set r := r′ − r′′ and ai := a′i − a′′i for i = 1, . . . , s and conclude by noting that
the obtained representation is uniform in g−1(0).

From now on, we will use this property directly if it is required and assuming
one has an expert group knowledge of G.

4.1.3 Problem Approximations

In this subsection we present some results related to the approximation of a group
homomorphism which interpolates in a set of points S. They are inspired from the
theory of checkable proofs [5,7] and linear cryptanalysis [82]. We first develop some
results about the existence of an interpolating group homomorphism in S which
provides an answer to the special S-GHID problem. Next, we give another result
focusing on the computability of this one.

Homomorphism Existence

Lemma 4.1.11. Given two finite Abelian groups G and H, and a set of s points
S = {(xi, yi) | i = 1, . . . , s} ⊆ G×H, we assume that x1, . . . , xs H-generate G. We
let d be the order of H and p be its smallest prime factor. We assume that there
exists a function f : G −→ H such that

ρ := Pr
(r,a1,...,as)∈UG×Zs

d

[f(dr + a1x1 + · · ·+ asxs) = a1y1 + · · ·+ asys] >
1

p
.

— 51 —

4. MOVA Undeniable Signature

The set of points S interpolates in a group homomorphism. Furthermore, given a
random x ∈U G, the value y = f(x) matches the unique interpolation with probabil-
ity ρ.

Proof. Let K be the subgroup of Zs
d defined by

K := {(a1, . . . , as) ∈ Zs
d | a1x1 + · · ·+ asxs ∈ dG}.

We notice that the representation (4.3) of any element x ∈ G as a combination
of x1, . . . , xs is uniquely defined modulo K. By Lemma 4.1.5, the first assertion is
proved if one shows that a1y1 + · · ·+ asys = 0 for any (a1, . . . , as) ∈ K.

Let us consider a random tuple (r, a1, . . . , as) ∈U G × Zs
d. ρ is the probability

over this random tuple that f(dr + a1x1 + · · · + asxs) equals a1y1 + · · · + asys. An
alternative way to pick the ai’s uniformly at random consists in first picking a coset
of Zs

d/K uniformly at random and then picking a tuple of K uniformly at random.
Since all cosets have the same probability to be picked, we deduce the existence of
a coset (a1, . . . , as) + K such that

Pr
(r,b1,...,bs)∈UG×K

[f(dr+(a1+b1)x1+· · ·+(as+bs)xs) = (a1+b1)y1+· · ·+(as+bs)ys] ≥ ρ.

Note that a1x1 + · · ·+ asxs is now a constant x and that dr + b1x1 + · · ·+ bsxs can
be written dr′ where r′ is uniformly sampled in G and independent from b1, . . . , bs.
Hence, there exists an element r′ ∈ G such that

Pr
(b1,...,bs)∈UK

[f(dr′ + x) = (a1 + b1)y1 + · · ·+ (as + bs)ys] ≥ ρ.

So we have

Pr
(b1,...,bs)∈UK

[b1y1 + · · ·+ bsys = constant] >
1

p
.

Since (b1, . . . , bs) 7→ b1y1+· · ·+bsys is a group homomorphism from K to a subgroup
of H it must be a balanced function. Its image is either a subgroup of size at least p
or the trivial subgroup {0}. Hence, the probability must actually be 1 and we have
b1y1 + · · ·+ bsys = 0 for all (b1, . . . , bs) ∈ K.

To prove the second assertion, we first note that the unique homomorphism g
interpolating in S is such that g(x) := a1y1 + · · · + asys and is uniquely defined by
x = dr +a1x1 + · · ·+asxs. Moreover, since the mapping defined in (4.2) is balanced
by Lemma 4.1.9, we deduce that

ρ = Pr
x∈UG

[f(x) = g(x)],

which concludes the proof.

— 52 —

4.1. Interpolation of Group Homomorphisms

In the following lemma, we show that a similar result holds, even if we restrict on
the tuples (r, a1, . . . as) whose combinations generate an arbitrary fixed value in G.

Lemma 4.1.12. Let G, H, S, d, and p as in Lemma 4.1.11. We assume that S
does not interpolate in any group homomorphism and define for any x ∈ G the set

Ux := {(r, a1, . . . , as) ∈ G× Zs
d | dr + a1x1 + · · ·+ asxs = x}.

Then, for any x ∈ G and any y ∈ H, we have

Pr
(r,a1,...,as)∈UUx

[a1y1 + · · ·+ asys = y] = 0 or δ,

for a constant δ ≤ 1/p. Therefore, for any x ∈ G and any function f : G→ H, we
have

Pr
(r,a1,...,as)∈UUx

[f(x) = a1y1 + · · ·+ asys] ≤ 1

p
.

Proof. Let K be defined as in the proof of Lemma 4.1.11. By Lemma 4.1.5, the
image of g : (b1, . . . , bs) 7→ b1y1 + · · · + bsys defined on K is a subgroup of order
greater or equal to p. Moreover, by Lemma 4.1.8, g is balanced on its image, which
shows that

Pr
(b1,...,bs)∈UK

[b1y1 + · · ·+ bsys = y] = 0 or δ

for any y ∈ H, where δ = 1/|Im(g)|. Let x be an arbitrary element of G. We can
deduce that for any fixed tuple (r′, b′1, . . . , b

′
s) ∈ Ux, we also have

Pr
(b1,...,bs)∈UK

[(b1 + b′1)y1 + · · ·+ (bs + b′s)ys = y] = 0 or δ

for any y ∈ H. This is equivalent to

Pr
(a1,...,as)∈UVx

[a1y1 + · · ·+ asys = y] = 0 or δ,

for any y ∈ H, where Vx := {(a1, . . . , as) | ∃r ∈ G s.t. (r, a1, . . . , as) ∈ Ux}. Here,
we remark that for any tuple (a1, . . . , as) ∈ Vx, there exists the same number of
elements r ∈ G such that (r, a1, . . . , as) ∈ Ux. Namely, this number is equal to the
cardinality of the kernel of the homomorphism r 7→ dr defined on G, which is equal
to #G/#dG. From this, we finally deduce that

Pr
(r,a1,...,as)∈UUx

[a1y1 + · · ·+ asys = y] = Pr
(a1,...,as)∈UVx

[a1y1 + · · ·+ asys = y] = 0 or δ,

for any y ∈ H.

— 53 —

4. MOVA Undeniable Signature

Homomorphism Computability

The next result says that the function f can be used to compute the unique homo-
morphism g, i.e., to solve the 1-S-GHI problem.

Lemma 4.1.13. Given two finite Abelian groups G and H, and a set of s points
S = {(xi, yi) | i = 1, . . . , s}, we assume that x1, . . . , xs H-generate G. We assume
that we are given the order d of H whose smallest prime factor is p and that we can
sample elements in G with respect to a uniform distribution. We assume that we
have an oracle function f : G −→ H such that

Pr
(r,a1,...,as)∈UG×Zs

d

[f(dr + a1x1 + · · ·+ asxs) = a1y1 + · · ·+ asys] =
1

p
+ θ

with θ > 0. Let ε > 0 be arbitrarily small. There exists a group homomorphism g
which interpolates S and which is computable within

16

θ2
log

(p

ε

)
(1 + o(1))

oracle calls to f with an error probability less or equal to ε(1 + o(1)) when θ → 0.

Proof. Due to Lemma 4.1.11, the homomorphism g exists and we have

Pr
x∈UG

[f(x) = g(x)] =
1

p
+ θ. (4.4)

We use the same techniques which are used in linear cryptanalysis and consider
Algorithm 4.1. We choose the parameters related to this algorithm as follows

n =
8

θ2

(
1

p
+ θ

)
log

(p

ε

)
and τ =

1

p
+

θ

2

and we first estimate the error probability of the acceptance test given in this algo-
rithm. We consider the two following types of error

ε1 = Pr
x∈UG

[c ≤ τn | y = g(x)] and ε2 = Pr
x∈UG

[c > τn | y 6= g(x)].

We will now estimate these two values and show that they are negligible. If y 6= g(x),
then the test (T) works with probability t2 ≤ 1/p due to Lemma 4.1.11. We also
notice that if y = g(x), the probability that the test works is ρ := 1

p
+ θ by (4.4),

since dr + a1x1 + · · · + asxs + ax is uniformly distributed in G by Lemma 4.1.9.
Therefore, we have

ε1 =

bτnc∑
i=0

(
n

i

)
ρi(1− ρ)n−i and ε2 =

n∑

i=bτnc+1

(
n

i

)
ti2(1− t2)

n−i. (4.5)

— 54 —

4.1. Interpolation of Group Homomorphisms

Algorithm 4.1. Algorithm computing the group homomorphism g

Parameters: n ∈ N and τ ∈ [0, 1]
Input: x ∈ G
1: repeat
2: pick r ∈U G, a1, . . . , as ∈U Zd uniformly at random
3: y = f(x + dr + a1x1 + · · ·+ asxs)− a1y1 − · · · − asys

4: c = 0
5: for i = 1 to n do
6: pick r ∈U G, a1, . . . , as, a ∈U Zd uniformly at random
7: if f(dr+a1x1 + · · ·+asxs +ax) = a1y1 + · · ·+asys +ay (T) then
8: c = c + 1
9: end if

10: end for
11: until c > τn
Output: y

Let

ϕ(t) :=
1√
2π

e−
t2

2

be the probability density function of the normal distribution and

Φ(x) :=

∫ x

−∞
ϕ(t)dt

the corresponding cumulative distribution function. Applying the Central Limit
Theorem on both equations given in (4.5) we obtain1

ε1 = Φ

(
bτnc − ρn√
nρ(1− ρ)

)
+ o(1) (4.6)

and

ε2 = 1− Φ

(
bτnc+ 1− nt2√

nt2(1− t2)

)
+ o(1), (4.7)

when θ → 0 (i.e., n→∞). Since Φ is a monotone function and Φ(−x) = 1− Φ(x)
for any x ∈ R, we get the inequalities

ε1 ≤ Φ

(
√

n
τ − ρ√
ρ(1− ρ)

)
+ o(1) (4.8)

1Using the inequality of Slud [139] we can show that ε1 is a lower bound of the term Φ() in (4.6)
while ε2 is an upper bound of the term 1− Φ() in (4.7).

— 55 —

4. MOVA Undeniable Signature

and

ε2 ≤ Φ

(
−√n

τ − t2√
t2(1− t2)

)
+ o(1).

Let h be a real function defined by h(t) = (τ − t)/(
√

t(1− t)). By looking at the
logarithmic derivative of the function h

d

dt
log(h(t)) =

−1

τ − t
+

t− 1
2

t(1− t)

on the interval [0, p−1], we notice that this one is negative. Hence, we deduce that

ε2 ≤ Φ

(
−√n

τ − p−1

√
p−1(1− p−1)

)
+ o(1) = Φ

(
−√n

θ

2
√

p−1(1− p−1)

)
+ o(1).

For x > 0, it can be shown (see Lemma 2 in Chapter VII, Section 1 of Feller [57])
that

Φ(−x) <
ϕ(x)

x
.

Hence, when x is large enough (x > 1), we even have

Φ(−x) < ϕ(x). (4.9)

From this, it follows that

ε2 ≤ 1√
2π
· e− nθ2

8(p−1(1−p−1)) + o(1), (4.10)

when ε is small enough, i.e., when
√

n · θ is large enough. Now, we substitute the
expression of n in (4.10) and we obtain

ε2 ≤ 1√
2π

(
ε

p

) p+p2θ
p−1

+ o(1).

Since
p + p2θ

p− 1
≥ 1 and

ε

p
< 1

when ε is small, we finally get

ε2 ≤ ε

p
√

2π
+ o(1) ≤ ρ

ε

2
+ o(1). (4.11)

— 56 —

4.1. Interpolation of Group Homomorphisms

In a similar way, we show that ε1 ≤ ε/2 + o(1). From (4.8) and by applying the
inequality (4.9) when ε is small enough, we have

ε1 ≤ ϕ

(
−

√
n · θ

2
√

ρ(1− ρ)

)
+ o(1) ≤ 1√

2π
e−

nθ2

8ρ(1−ρ) + o(1),

which leads to

ε1 ≤ 1√
2π

(
ε

p

) 1
1−ρ

+ o(1) ≤ ε√
2π · p + o(1) ≤ ε

2
+ o(1).

It remains to compute the complexity and the error probability of the algorithm.
At first, we observe that the probability for the “until” condition to be not satisfied
is given by

α := Pr
x∈UG

[c ≤ τn] = ρε1 + (1− ρ)(1− ε2).

If ε is small enough (ε ≤ 1/2), we have

α = 1− ρ + ρε1 − ε2(1− ρ) ≤ 1− ρ + ρ
ε

2
+ o(1) ≤ 1− 3ρ

4
+ o(1).

Moreover, the expected number of iterations is equal to

∞∑
i=1

iαi−1(1− α) =
1

1− α
≤ 4

3ρ
+ o(1).

Hence, the expected complexity in terms of oracle calls to f admits the following
upper bound

4(n + 1)

3ρ
(1 + o(1)) ≤ 2n

ρ
(1 + o(1)) =

16

θ2
log

(p

ε

)
(1 + o(1)) .

Using (4.11), the probability of error is given by

∞∑
i=1

αi−1(1− ρ)ε2 ≤ (1− ρ)ε2

(
2

ρ
+ o(1)

)
≤ ε (1 + o(1)) ,

which concludes the proof.

4.1.4 Problem Amplifications and Reductions

In this subsection, we consider GHID and GHI problems with a set of points S =
{(g1, h1), . . . , (gs, hs)} such that g1, . . . , gs H-generate G and S interpolates in a
group homomorphism f . Note that this homomorphism is unique by Lemma 4.1.3.

— 57 —

4. MOVA Undeniable Signature

Amplification of the GHI and GHID Problems

We show here how GHI and GHID problem solvers can be amplified so that both
problems can be perfectly solved under certain conditions.

GHID Amplification. Here, we need to assume that H is cyclic and has a prime
order. For any integer n and any set {(x1, y1), . . . (xn, yn)} ∈ (G×H)n, we explain
how one can correctly decide whether f(xi) = yi for all i = 1, . . . , n or not with an
overwhelming probability, using an n-S-GHID distinguisher D with an advantage
ε > 0. For this purpose, the main task consists in generating an n-S-GHID instance
from {(x1, y1), . . . (xn, yn)} such that this one is of type T0 if f(xi) = yi for all
i = 1, . . . , n and of type T1 otherwise. We generate such an instance by picking
ri ∈U G, ai,j ∈U Zd uniformly at random for i = 1, . . . , n, j = 1, . . . , s + n and by
setting

x′i := dri + ai,1g1 + · · ·+ ai,sgs + ai,s+1x1 + · · ·+ ai,s+nxn

and
y′i := ai,1h1 + · · ·+ ai,shs + ai,s+1y1 + · · ·+ ai,s+nyn.

Note that if f(xi) = yi for i = 1, . . . , n, then the above instance is of type T0,
since x′i is uniformly distributed for i = 1, . . . , n by Lemma 4.1.9 and f(x′i) = y′i
for i = 1, . . . , n due to the homomorphic property of f . On the other hand, if
f(xj) 6= yj for at least one j, the above instance is of type T1 provided that H is a
cyclic group of a prime order. Namely, we are ensured that ai,s+j(f(xj) − yj) can
take any value of H in this case. Therefore, the value y′i is independent from x′i for
any i, which shows that the instance defined by x′i and y′i for i = 1, . . . , n is of type
T1. As in the article of Boneh [19] about the decision Diffie-Hellman problem, we can
correctly determine whether f(xi) = yi for i = 1, . . . , n or not with an overwhelming
probability in polynomial time. We summarize this technique below. We need to
consider two experiments. The first one consists in generating k instances as above
and feeding them to D. Let w1 be the random variable counting the number of times
D decides that the instance was of type T0. In a second experiment, we generate k
random instances of type T1 and feed them to D. Let w2 be the number of “type
T0” answers by D. One can decide whether f(xi) = yi for i = 1, . . . , n, by testing
whether |w1 − w2| is greater than a given threshold. An adequate choice of the
threshold value allows to succeed with an overwhelming success probability.

GHIP Amplification. We can amplify the success probability of a 1-S-GHIP
solver A to an overwhelming success probability by directly applying results of
Lemma 4.1.13. This amplification technique works in polynomial time provided that
A has a success probability greater than 1/p+ θ, where θ is non-negligible. Since an
n-S-GHIP instance consists in n independent 1-S-GHIP instances, one can assume

— 58 —

4.1. Interpolation of Group Homomorphisms

that an n-S-GHIP solver solves every component with the same probability. Hence,
amplification techniques work for n-S-GHIP provided that the solver succeeds with
a probability greater than 1/pn + θ.

These amplification results show that GHID and GHI problems can be related
to their non-probabilistic variants if certain conditions are fullfiled. When H is
cyclic of prime order, GHID distinguishers can be used to determine whether any
set {(x1, y1), . . . , (xn, yn)} ∈ (G × H)n interpolates in f . When GHIP solvers are
good enough, one can evaluate f on any given points (x1, . . . , yn) ∈ Gn.

We are now in position to show that these non-probabilistic versions can be
interpreted in terms of languages so that they can be analyzed using tools of the
theory of complexity.

Non-Probabilistic GHI and GHID Problems are in NP ∩ co-NP
We associate a language L to the 1-S-GHID problem which is composed of any
instance (x, y) ∈ G×H such that f(x) = y. We show that L is in NP . In order to
decide whether a given pair (x, y) lies in L in polynomial time, it suffices to provide
a witness containing the coefficients r ∈ G, a1, . . . , as ∈ Zd such that

x = dr + a1g1 + · · ·+ asgs. (4.12)

Namely, by the assertion 5 of Lemma 4.1.3, such a representation always exists and
checking the validity of the following equation

y = a1h1 + · · ·+ ashs

directly provides the answer. Note that this is the case also for instances (x, y) 6∈ L.
As a consequence of this, we deduce that the non-probabilistic variant of the 1-S-
GHID problem lies in NP ∩ co-NP . This result generalizes in a straightforward
way to the n-S-GHID problems with any n ∈ N.

To proceed in a similar way for the 1-S-GHI problem, we first define some closely
related decisional problems. Assume that the group H is equipped with a totally
ordered relation denoted 4 and consider the language

Lh := {x ∈ G | f(x) 4 h}

for any h ∈ H. We note that if one is able to decide whether x ∈ Lh for any x ∈ G
and h ∈ H, then one can easily compute f(x) by dichotomy. As above, we can show
that coefficients r ∈ G, a1, . . . , as ∈ Zd satisfying (4.12) provides a witness for x
with respect to Lh for any h ∈ H. This shows that non-probabilistic GHI problems
can be easily represented with languages lying in NP ∩ co-NP .

— 59 —

4. MOVA Undeniable Signature

Remark 4.1.14. In the above discussion, we did not specify to which parameter,
the term “polynomial” refers to. To formally specify this, we can consider a family
of problems indexed by a parameter k and whose respective instances are of size k.
So, we should consider such a family of n-Sk-GHID (resp. GHI) problems with some
groups Gk and Hk satisfying the above required properties.

Reductions to MSR Problem

Note that finding the coefficients a1, . . . , as in (4.12) suffices to solve the 1-S-GHI and
1-S-GHID problems with the input x. Namely, these coefficients allow to compute
a1h1 + · · · + ashs which readily gives the answer of the 1-S-GHI and 1-S-GHID
problems. Since the coefficients a1, . . . , as can be found by solving a (d, S)-MSR
problem on x, the n-S-GHI and n-S-GHID problems reduce to (d, S)-MSR problem.

4.2 Interactive Proof Protocols

In this section, we develop some interactive proof protocols related to the interpola-
tion of group homomorphisms. They serve as a preparation towards the presentation
of our undeniable signature scheme MOVA. Namely, the confirmation and the denial
protocols of MOVA are directly based on them.

Throughout this section, we use a commitment scheme denoted Commit with
corresponding opening algorithm Open. For the notation related to the commitment
scheme and further technical details, we refer to Subsection 2.2.5.

4.2.1 Interactive Proof for the GHID Problem

Let G, H, and S = {(g1, e1), . . . , (gs, es)} be parameters of a GHID problem. Let d
be the order of H and ` ∈ N be a security parameter. We present here an interactive
proof in which a prover wants to convince a verifier that S interpolates in a group
homomorphism f : G −→ H known by himself. This provides a positive answer to
the special S-GHID problem. This protocol is denoted GHIproof`(S) and is depicted
in Figure 4.1.

We remark that this protocol makes use of a commitment scheme. This one is
crucial to achieve zero-knowledge, since it allows the prover to disclose the answers
vi’s after having checked that the verifier generated the challenges correctly. Other-
wise, a malicious verifier could use the prover as an oracle to evaluate the function
f on any element of G. Note that the parameter ` corresponds to the number of
challenges sent by the verifier. So, ` plays a direct role in the security of GHIproof.
This protocol can actually be seen as the parallelization of ` simpler protocols with
one challenge u. Such a version with one challenge is depicted in Figure 4.2.

— 60 —

4.2. Interactive Proof Protocols

GHIproof`(S)
Parameters: G,H, d
Input: `, S = {(g1, e1), . . . , (gs, es)} ⊆ G×H
1: The verifier picks ri ∈U G and ai,j ∈U Zd uniformly at random for

i = 1, . . . , ` and j = 1, . . . , s. He computes ui = dri +ai,1g1 + · · ·+ai,sgs

and wi = ai,1e1 + · · ·+ ai,ses for i = 1, . . . , `. He sends u1, . . . , u` to the
prover.

2: The prover checks whether f(gi) = ei for i = 1, . . . , `. If it is not
the case, he aborts the protocol. Then, he computes vi = f(ui) for
i = 1, . . . , ` and the commitment (com, dec) ← Commit(v1, . . . , v`). He
sends the committed value com to the verifier.

3: The verifier sends all ri’s and ai,j’s to the prover.
4: The prover checks that the ui’s were computed correctly by verifying

that ui = dri +ai,1g1 + · · ·+ai,sgs holds for i = 1, . . . , `. If not, he aborts
the protocol. He then opens his commitment by sending the values vi’s
and dec.

5: The verifier checks that vi = wi holds for i = 1, . . . , ` and that the
commitment is opened correctly, i.e., 1← Open(v1, . . . , v`, com, dec). If
this is the case, the verifier accepts the proof. Otherwise, he rejects it.

Figure 4.1: Interactive proof for the GHID problem

Security results related to GHIproof are presented here.

Theorem 4.2.1. Let G, H be some Abelian groups and ` ∈ N. We denote by d
the order of H and p the smallest prime factor of d. Assume that we are given a
set of points S = {(g1, e1), . . . , (gs, es)} ⊆ G × H such that the elements g1, . . . , gs

H-generate the group G. We consider the GHIproof`(S) protocol.

1. The GHIproof protocol is complete.

2. Assuming that Commit is perfectly hiding, the GHIproof protocol is perfect
black-box zero-knowledge against any verifier. Moreover, if Commit is a per-
fectly hiding trapdoor commitment scheme, the GHIproof protocol is perfect
black-box straight-line zero-knowledge against any verifier who has the secret
key KV

s associated to Commit.

3. Assuming that Commit is a perfectly hiding trapdoor commitment scheme with
associated secret key KV

s of the (honest) verifier, the GHIproof protocol is
perfect non-transferable.

— 61 —

4. MOVA Undeniable Signature

Prover Verifier

v = f(u)
(com, dec)← Commit(v)

u←−−−−−−−−−
r ∈U G, aj ∈U Zd

u = dr + a1g1 + · · ·+ asgs

com−−−−−−−−−→
checks that

u = dr + a1g1 + · · ·+ asgs

r,a1,...,as←−−−−−−−−−
v,dec−−−−−−−−−→ checks that

v = a1e1 + · · ·+ ases

1← Open(v, com, dec)

Figure 4.2: Simplified interactive proof for the GHID problem

4. The GHIproof protocol is sound: from any cheating prover P∗ who passes
the protocol on an invalid set S (i.e., with no interpolating homomorphism)
with a probability Succsd-GHI

P∗ = ε and an expert group knowledge of G, we can
construct an algorithm B which finds a collision on the commitment scheme
Commit with a probability Succcom-bnd

B ≥ ε(ε− p−`) by rewinding P∗ once.

5. (“Proof of knowledge”) For any θ > 0, assuming that the protocol succeeds with
probability greater than (p−1+θ)` with an honest verifier and that Commit is ex-
tractable, for any ε > 0 there exists an extractor with a time complexity factor
O(log(1/ε)) which can compute an interpolating group homomorphism from
the (possibly cheating) prover using the secret key of Commit with probability
at least 1− ε.

Proof.

1. The completeness follows by the homomorphic property of f . Namely,

f(dri + ai,1g1 + · · ·+ ai,sgs) = ai,1e1 + · · ·+ ai,ses for i = 1, . . . `,

holds when f(gj) = ej for j = 1, . . . , s.

2. First, we handle the case of the trapdoor commitment with an associated pair
of key (KV

p ,KV
s) owned by the cheating verifier V∗. We construct a simulator B

with input KV
s which interacts with V∗. The simulator B first receives the challenge

— 62 —

4.2. Interactive Proof Protocols

u := (u1, . . . , u`) from V∗. Otherwise, the simulator answers the flag abort. Then,
B picks a tuple v′ := (v′1, . . . , v

′
`) ∈U H` uniformly at random, computes

(com′, dec′)← Commit(v′,KV
p)

and sends com′ to V∗. Then, the verifier sends the values ri’s and ai,j’s to B.
The simulator checks whether the received values satisfy ui = dri +

∑s
j=1 ai,jgj for

i = 1, . . . , `. If it is not the case the simulator answers abort. If it is the case, the
simulator deduces the right tuple v and computes

dec← Collide(v′, v, com′, dec′,KV
s)

when v 6= v′. The simulator then sends v, dec (or dec′ if v = v′) to open the
commitment com′. Note that in this case, the transcript of this interaction is

(u, com′, ri’s, ai,j’s, v, dec).

Since the commitment is perfectly hiding, the transcript corresponding to the above
interaction between the simulator and V∗ has exactly the same distribution as a
real transcript produced between an honest prover and the verifier V∗.

We now consider Commit without trapdoor. The main difficulty in this situation
consists in solving the challenges while we cannot open the commitment on any value
of our choice. This will be solved by rewinding V∗ with the same random tape. At
the beginning, B receives the challenge u := (u1, . . . , u`) from V∗ and aborts if it is
not the case. He picks a committed value com′ uniformly at random and sends it
to V∗. The verifier answers the coefficients ri’s and ai,j’s. If ui = dri +

∑s
j=1 ai,jgj

for i = 1, . . . , `, the simulator stops and rewinds V∗ with the same random tape.
Otherwise, B outputs the transcript (u, com′, ri’s, ai,j’s, abort). After the rewinding,
V∗ sends again the same challenge u. The simulator now computes the answers
vi :=

∑s
j=1 ai,jej and computes

(com, dec)← Commit(v).

B sends com to the verifier. This one answers some values ri’s and ai,j’s which
generate u. Otherwise, the simulator aborts and outputs (u, com, ri’s, ai,j’s, abort)
as transcript. Finally, the simulator would send dec and v to the verifier and outputs
the transcript

(u, com, ri’s, ai,j’s, v, dec).

As above, we see that except when the simulator stops the simulation and rewinds
V∗, the interaction is identical as with an honest prover. Since Commit is perfectly
hiding, the first value com′ has the correct distribution. Thus, the simulation works
and the transcript generated by the simulator has the same distribution as the one

— 63 —

4. MOVA Undeniable Signature

produced by an honest signer and the verifier V∗.

3. The simulator B has to simulate an honest prover interacting with a verifier Ṽ.
We recall that the simulator is given the secret key of the honest verifier (and of
Commit). If the set S does not interpolate in a group homomorphism (B knows this
fact thanks an information bit by definition of the non-transferability), the simulator
simply answers abort in the second step of the protocol. Otherwise, the simulator
follows exactly the same simulation as for proving straight-line zero-knowledge. So,
the simulator has exactly the same behaviour as an honest prover. Hence, the non-
transferability is perfect.

4. By Lemma 4.1.11, if the set S does not admit any interpolating homomorphism,
it is impossible to find any procedure to deduce vi = ai,1e1 + · · · + ai,ses from the
challenge ui = dr + ai,1g1 + · · · + ai,sgs with probability greater than 1/p, for any
i = 1, . . . , `. Since the challenges are generated independently, no prover is able to
find the correct v = (v1, . . . , v`) from the challenge u = (u1, . . . , u`) with probability
greater than p−`. Below, we show that a (cheating) prover P∗ must break the binding
property of Commit with non-zero probability in order to succeed in the protocol
with a probability ε > p−`.

We construct below a simulator B which interacts with P∗ and plays the role of
an honest verifier. The simulator will launch 2 protocol runs sequentially with P∗

in such a way that a collision on Commit can be found with a certain probability.
For this, he rewinds the prover and follows a behaviour which depends on the first
run. We emphasize here that this is allowed as long as the prover receives messages
which are correctly distributed in both runs of the protocol. So, if we look at both
runs separately, the prover cannot see any difference from an interaction with an
honest verifier.

The simulator B picks some coefficients ai,j’s and ri’s uniformly at random and
computes the challenges ui := dri +

∑s
j=1 ai,jgj for i = 1, . . . , `. He then sends u to

P∗. This one answers a committed value com. The simulator releases the coefficients
ai,j’s and ri’s to P∗. At the end, P∗ succeeds if he opens the commitment correctly
on the values vi :=

∑s
j=1 ai,jej for i = 1, . . . , `. If he does not succeed, the simulator

aborts. Otherwise, using his expert group knowledge of G, the simulator finds some
coefficients a∗i,j’s and r∗i ’s satisfying

ui = dr∗i +
s∑

j=1

a∗i,jgj for i = 1, . . . , `,

and which are picked uniformly at random among all possible representations of
the ui’s. Now, B rewinds the prover with the same random tape. The simulator
sends the same challenges ui’s as before. Therefore, the prover answers the same

— 64 —

4.2. Interactive Proof Protocols

commitment com. At this time, B releases the coefficients a∗i,j’s and r∗i ’s to P∗. This
one succeeds if he is able to open com on the values v∗i =

∑s
j=1 a∗i,jej for i = 1, . . . , `.

In case of success, the simulator directly finds a collision with respect to Commit if
vi 6= v∗i holds for at least one i.

It remains to compute the probability that this event occurs. At first, we note
that the simulations are perfect in both runs of the protocol. Namely, if we look at
both protocol runs independently, we remark that all coefficients ri, ai,j are chosen
uniformly at random. We now have to take into account that rewinding the prover
with the same random tape and the same challenges is a restriction in the space of
all possible protocol runs. So, we decompose the probability of success according
to the different random tapes $ and challenges u. Note that once the random tape
and the challenge are fixed, both protocol runs are independent.

Let A be the probability event that P∗ succeeds in the first protocol run and
A$,u be the same event conditioned by the random tape $ and challenge u. Sim-
ilarly, we define the same events A∗ and A∗

$,u for the second protocol run. We set
Pr[A$,u] = Pr[A∗

$,u] := ε$,u. We also denote by B the event that v 6= v∗, where
v∗ := (v∗1, . . . , v

∗
`) and B$,u the same event conditioned by the random tape $ and

challenge u. Note that Pr[¬B$,u] ≤ p−` for any random tape $ and any challenge
u by Lemma 4.1.12. Since A$,u and A∗

$,u are independent, we have

Pr[A$,u ∧ A∗
$,u] = ε2

$,u.

From this, we deduce that the following

Pr[A$,u∧A∗
$,u∧B$,u] ≥ ε2

$,u−Pr[A$,u∧A∗
$,u|¬B$,u]·p−` ≥ ε2

$,u−Pr[A$,u|¬B$,u]·p−`

holds. Here, we show that A$,u and ¬B$,u are independent. Let U and V be the ran-
dom variables corresponding to the values u and v respectively. By Lemma 4.1.12,
for any u and v, Pr[V = v|U = u] = 0 or δ, for a constant δ ≤ p−`. Let V be
the support of V . By decomposing the events A$,u and ¬B$,u with respect to the
values taken by V , we obtain

Pr[A$,u] :=
∑
v∈V

Pr[A$,u|V = v] · δ

and
Pr[¬B$,u] :=

∑
v∈V

Pr[V = v|U = u]2 = δ.

Then,

Pr[A$,u ∧ ¬B$,u] =
∑
v∈V

Pr[A$,u|V = v] · Pr[V = v|U = u]2 = Pr[A$,u] · Pr[¬B$,u]

— 65 —

4. MOVA Undeniable Signature

shows the independence of A$,u and ¬B$,u, so that Pr[A$,u|¬B$,u] = ε$,u. There-
fore, we obtain

Succcom-bnd
B ≥

∑
$,u

q$,u · ε2
$,u −

∑
$,u

q$,u · ε$,u · p−`,

where q$,u is the probability that the protocol runs with the random tape $ and
challenge u. Since the function x 7→ x2 defined on R is convex, we can apply Jensen’s
inequality on the first term. Thus, we finally get

Succcom-bnd
B ≥ ε2 − ε · p−`,

which concludes the proof.
5. We describe an extractor E which knows the secret key Kcom

s associated with
Commit and plays with the (possibly cheating) prover P∗. Since all challenges ui’s
are independent and have the same distribution, without loss of generality, we can
assume that P∗ solves any challenge ui with the same probability. By assumption,
this probability is greater than p−1 + θ. By Lemma 4.1.11, there exists a group
homomorphism g which interpolates the set of points S. The extractor now uses P∗

as an oracle function f which satisfies the condition of Lemma 4.1.13. Namely, E
launches P∗ and sends as challenge u1 a value chosen with respect to Algorithm 4.1.
The prover sends com and E computes (v1, . . . , vs) ← Extract(com,Kcom

s) and re-
trieves v1 the corresponding answer of f . Then, E simply follows Algorithm 4.1
and proceeds identically for subsequent values to evaluate by f . Note that E may
need to rewind the prover for each value to evaluate by f . The complexity of this
extractor follows by applying Lemma 4.1.13.

Remark 4.2.2. Note that the soundness relies on a computational assumption when
the commitment is computationally binding. In this case, such an interactive proof
is called a “computationally sound interactive proof” or an “interactive argument”.

Remark 4.2.3. The assertion 5 shows that GHIproof possesses a kind of extraction
of the computability of the function f . Since f is not characterized by a single
parameter here, we cannot extract f with respect to the formal definition of a proof
knowledge.

Remark 4.2.4. We note that the security properties of GHIproof strongly depends
on Commit. In practice, it is impossible to have a commitment satisfying both the
extractability and a perfectly hiding property. According to the desired security
goals, we can adjust Commit as long as it is possible. For our thesis purposes,
we will usually consider Commit as a perfectly hiding and computationally binding
trapdoor commitment. If the non-transferability is not required, we can content
ourselves with a perfectly hiding and computationally binding commitment.

— 66 —

4.2. Interactive Proof Protocols

4.2.2 Interactive Proof for the co-GHID Problem

Let G, H, and S = {(g1, e1), . . . , (gs, es)} ⊆ G × H be parameters of a GHID
problem, and let d be the order of H with smallest prime factor p. Let T =
{(x1, z1), . . . , (xt, zt)} ⊆ G × H be a set of t points. We assume that we have a
prover who wants to convince a verifier that for at least one k the answer to the
1-S-GHID problem with input (xk, zk) is negative. For this, the prover makes use
of the knowledge of a group homomorphism f uniquely interpolating S. Let ` ∈ N
be a security parameter. He performs the interaction depicted in Figure 4.3 with a
verifier.

coGHIproof`(S, T)
Parameters: G,H, d, p
Input: `, S = {(g1, e1), . . . , (gs, es)}, T = {(x1, z1), . . . , (xt, zt)}
1: The verifier picks ri,k ∈U G, ai,j,k ∈U Zd, and λi ∈U Zp uniformly

at random for i = 1, . . . , `, j = 1, . . . , s, k = 1, . . . , t. He computes
ui,k := dri,k +

∑s
j=1 ai,j,kgj + λixk and wi,k :=

∑s
j=1 ai,j,kej + λizk for all

i and k. Set u := (u1,1, . . . , u`,t) and w := (w1,1, . . . , w`,t). He sends u
and w to the prover.

2: The prover computes yk = f(xk) for k = 1, . . . , t and verifies that
yk 6= zk for at least one k. Otherwise, he aborts the protocol. Then,
he computes vi,k := f(ui,k) for i = 1, . . . , `, k = 1, . . . , t. From the
equation wi,k − vi,k = λi(zk − yk), he should be able to find each λi

if the verifier is honest, since yk 6= zk for at least one k. Otherwise,
he picks λi ∈U Zp uniformly at random for i = 1, . . . , `. He computes
(com, dec)← Commit(λ), where λ := (λ1, . . . , λ`). The prover sends the
committed value com to the verifier.

3: The verifier sends all ri,k’s and ai,j,k’s to the prover.
4: The prover checks that u and w were correctly computed by verifying

that ui,k := dri,k +
∑s

j=1 ai,j,kgj + λixk and wi,k :=
∑s

j=1 ai,j,kej + λizk

for all i and k. If not, he aborts the protocol. He then opens the
commitment by sending λ and dec.

5: The verifier checks that the prover has found the right λ and that the
commitment is correctly opened by checking 1← Open(λ, com, dec). If
this is the case, the verifier accepts the proof. Otherwise, he rejects it.

Figure 4.3: Interactive proof for the co-GHID problem

Remark 4.2.5. Note that retrieving the values λi’s in coGHIproof requires to ex-
tract discrete logarithms in H which are restricted in the set Zp. So, the group H

— 67 —

4. MOVA Undeniable Signature

should be selected to satisfy this property. Another way to get rid of this problem
is to restrict the challenge λ in a smaller interval of Zp.

This protocol was inspired from the denial protocol of Gennaro et al. [66]. This
one can actually be seen as a special case of ours with the RSA encryption function
as homomorphism.

We also notice that λ was chosen such that it can uniquely be retrieved from
every nonzero values of H that can be taken by the elements zk− yk’s. Namely, this
is shown by the following result.

Lemma 4.2.6. Let H be an Abelian group of order d, and a, b ∈ H such that b 6= 0.
Let λ be in Zp where p is the smallest prime dividing d. Then, if the equation a = λb
has a solution in λ, then this one is unique.

Proof. Let us first consider the subgroup 〈b〉 generated by b. If there exists a solution
to the above equation, we must have a ∈ 〈b〉. Moreover, the coefficient λ is uniquely
defined modulo ord(b). By definition of p, we have ord(b) ≥ p. Therefore, λ is
uniquely defined in Zp.

As for the GHIproof protocol, we can see that this interactive proof is the paral-
lelization of ` times a simpler protocol with one challenge. We depict this simplified
version in Figure 4.4.

Security results related to coGHIproof are given in the following theorem.

Theorem 4.2.7. Let G, H be some Abelian groups and ` ∈ N. We denote by d
the order of H and p the smallest prime factor of d. Assume that we are given a
set of points S = {(g1, e1), . . . , (gs, es)} ⊆ G × H such that the elements g1, . . . , gs

H-generate the group G and such that S interpolates in exactly one homomorphism
f known by the prover. We consider the coGHIproof`(S, T) protocol, where T =
{(x1, z1), . . . , (xt, zt)} ⊆ G×H.

1. The coGHIproof protocol is complete.

2. Assuming that Commit is perfectly hiding, the coGHIproof protocol is perfect
black-box zero-knowledge against any verifier. Moreover, if Commit is a per-
fectly hiding trapdoor commitment scheme, the coGHIproof protocol is perfect
black-box straight-line zero-knowledge against any verifier who has the secret
key KV

s associated to Commit.

3. Assuming that Commit is a perfectly hiding trapdoor commitment scheme with
associated secret key KV

s of the (honest) verifier, the coGHIproof protocol is
perfect non-transferable.

— 68 —

4.2. Interactive Proof Protocols

Prover Verifier

vk = f(uk), yk = f(xk)
retrieves λ from

wk − vk = λ(zk − yk)
(com, dec)← Commit(λ)

uk’s, wk’s←−−−−−−−−−

rk ∈ G, aj,k ∈ Zd, λ ∈ Zp

uk = drk +
∑s

j=1 aj,kgj +λxk

wk =
∑s

j=1 aj,kej + λzk

com−−−−−−−−−→
checks

uk = drk +
∑s

j=1 aj,kgj +λxk

wk =
∑s

j=1 aj,kej + λzk

rk’s, aj,k’s←−−−−−−−−−

λ, dec−−−−−−−−−→ checks that λ is correct and
1← Open(λ, com, dec)

Figure 4.4: Simplified interactive proof for the co-GHID problem

4. The coGHIproof protocol is sound: from any cheating prover P∗ who passes
the protocol on a set T interpolating with S in a group homomorphism (i.e., f)
with a probability Succsd-coGHI

P∗ = ε and an expert group knowledge of G, we can
construct an algorithm B which finds a collision on the commitment scheme
Commit with a probability Succcom-bnd

B ≥ ε(ε− p−`) by rewinding P∗ once.

Proof.

1. The completeness follows directly from the uniqueness of the values λi’s as shown
in Lemma 4.2.6, when for at least one k we have yk 6= zk. This is fullfiled by as-
sumption.

2. The proof of zero-knowledge works in a very similar way as that of GHIproof.
Namely, in the case of the trapdoor commitment scheme, the simulator B first
answers a committed value com′ picked uniformly at random. After having received
the values ri,k’s and ai,j,k’s, B deduces λi from the equation

ui,k − dri,k +
s∑

j=1

ai,j,kgj = λixk

for i = 1, . . . , ` and k = 1, . . . , t and checks that each λi is identical for all k. He can
then checks that the wi,k’s were correctly generated. Then, the simulator opens com′

— 69 —

4. MOVA Undeniable Signature

on the right λi’s using the secret key of Commit. As for GHIproof, the simulator
outputs a transcript with identical distribution as the one produced between the
same verifier and an honest prover, when Commit is perfectly hiding.

When Commit is not a trapdoor commitment, the simulator B needs to stop after
the verifier discloses ri,k’s and ai,j,k’s. After rewinding the verifier, B is now able to
commit to the right answer λi’s. Following the same methodology as for GHIproof,
the simulator finally outputs a perfectly simulated transcript.

3. The simulator behaves exactly as for the straight-line zero-knowledge, except
when the set T interpolates with S in f . In this case, the simulator aborts the pro-
tocol. So, the simulator behaves identically as an honest prover. Thus, this protocol
is perfect non-transferable.

4. We first remark that ui,k is uniformly distributed for any fixed λi for i = 1, . . . , `
and k = 1, . . . , t by Lemma 4.1.9. Moreover, if the set of points T interpolates in f ,
we have f(xk) = zk for all k = 1, . . . , t. By the homomorphic property of f , we have
f(ui,k) = wi,k for any i and k. Putting all together implies that the distribution
of the challenge (ui,k, wi,k) is completely independent of the value λi for any i and
k. Thus, a prover cannot deduce the right λi’s with a probability greater than p−`

from the challenges. Below, we show how we can break the binding property of
Commit using a prover succeeding with a probability ε > p−`. To this, we follow the
same methodology as to prove assertion 4 of Theorem 4.2.1 (soundness of GHIproof)
which consists in running the protocol once with the prover, rewinding this one, and
running the protocol with carefully chosen coefficients.

The simulator B first picks the values ai,j,k’s, ri,k’s, and λi’s uniformly at random
and computes the tuples u = (u1,1, . . . , u`,t) and w = (w1,1, . . . , w`,t) according to the
co-GHIproof protocol. Then, B sends u, w to the prover P∗. This one answers com.
The simulator releases the coefficients ai,j,k’s, ri,k’s, λi’s, and the prover succeeds if
he opens com on λ = (λ1, . . . , λ`). In this case, B picks λ∗ = (λ∗1, . . . , λ

∗
`) uniformly

at random. By using his expert group knowledge, he is able to find some uniformly
random coefficients a∗i,j,k’s, r∗i,k’s satisfying

ui,k − λ∗i xk = dr∗i,k +
s∑

j=1

a∗i,j,kgj for i = 1, . . . , ` and k = 1, . . . , t.

The simulator rewinds P∗ with the same random tape and the same challenges. He
answers the same commitment com. This time, B sends a∗i,j,k’s, r∗i,k’s. The prover
wins if he is able to open com on the value λ∗. If λ∗ 6= λ, the simulator breaks the
computationally binding property of Commit.

Note that B simulates an honest verifier perfectly in both protocol runs. We
can compute the success probability that B finds a collision for Commit in a very

— 70 —

4.2. Interactive Proof Protocols

similar way as for GHIproof. Namely, we decompose the probability of success for
the different random tapes $ and challenges u. Let ε$,u be the probability that
the prover wins in one protocol run with the random tape $ and the challenge u
(and thus w = f(u)). Since the probability that λ = λ∗ for any random tape $ and
challenge u is equal to p−`, we can show as for GHIproof that the success probability
of B satisfies

Succcom-bnd
B ≥

∑
$,u

q$,u · (ε2
$,u − ε$,u · p−`),

where q$,u denotes the probability that the protocol runs with the random tape $
and the challenge u. Again, applying Jensen’s inequality leads to the desired bound
ε(ε− p−`).

Remark 4.2.8. The security properties of Theorem 4.2.7 can easily be proved when
the λi’s are picked in a set {0, 1, . . . , q}, for an integer q < p − 1. The soundness
probability becomes q−` in this setting.

Remark 4.2.9. As for GHIproof, we will usually consider coGHIproof with Commit
as a perfectly hiding and computationally binding trapdoor commitment scheme.
However, in a context where non-transferability is not required coGHIproof can be
instantiated with a classical perfectly hiding and computationally binding commit-
ment.

4.2.3 Interactive Proof for the MGGD Problem

Let G, d be some parameters and S1 some input of a d-MGGD problem. We propose
here an interactive proof in which a prover proves that S1 = {g1, . . . , gs} H-generate
G, for any group H of order d. In other words, by assertion 5 of Lemma 4.1.3 this
corresponds to show that 〈S1〉+ dG = G or by assertion 7 of the same lemma that
the answer to the d-MGGD problem is positive. For this, the prover needs an expert
group knowledge of G with S1. Let ` ∈ N be a security parameter. This protocol
called MGGDproof is depicted in Figure 4.5.

A simplified version of this protocol with only one challenge is depicted in Fig-
ure 4.6.

Before stating security properties of this protocol, we introduce the following
technical result. This one will play a crucial role for the soundness of MGGDproof.

Lemma 4.2.10. Given a finite Abelian group G, a subset S1 = {g1, . . . , gs} ⊆ G,
and an integer d with smallest prime factor p. We assume that there exists a function
f : G→ G× Zs

d satisfying

Pr
x

[x = dr + a1gs + · · ·+ asgs | x←U G; f(x) = (r, a1, . . . as)] >
1

p
.

— 71 —

4. MOVA Undeniable Signature

MGGDproof`(S1)
Parameters: G, d
Input: `, S1 = {g1, . . . , gs} ⊆ G
1: The prover picks x1, . . . , x` ∈U G uniformly at random and computes

(com, dec)← Commit(x1, . . . , x`). He sends com to the verifier.
2: The verifier picks y1, . . . , y` ∈U G uniformly at random and sends

y1, . . . , y` to the prover.
3: Using expert group knowledge, the prover finds ri ∈ G, ai,1, . . . , ai,s ∈ Zd

such that xi +yi = dri +
∑s

j=1 ai,jgj for i = 1, . . . , `. He sends the values
ri’s, ai,j’s to the verifier and opens the commitment by sending the xi’s
and dec.

4: The verifier checks that xi + yi = dri +
∑s

j=1 ai,jgj holds for i =
1, . . . , ` and that the commitment is correctly opened by checking
1 ← Open(x1, . . . , x`, com, dec). If this is the case, the verifier accepts
the proof. Otherwise, he rejects it.

Figure 4.5: Interactive proof for the MGGD problem

Then, we have G = 〈S1〉 + dG. In other words, S1 H-generate G for any Abelian
group H of order d.

Proof. First, we notice that if gcd(#G, d) = 1, we have dG = G which trivially leads
to 〈S1〉+dG = G. Now, assuming that gcd(#G, d) 6= 1, there exists a smallest prime
p′ such that p′|#G and p′|d. Consider now the unique prime factor decomposition

#G =
k∏

i=1

qai
i ,

where q1 < q2 < · · · < qk. Note that p′ = q` for an integer ` ≤ k. By the structure
of the Abelian groups (see Appendix A.1), we can deduce that dG(qi) = G(qi) for
any integer i < `, where A(q) denotes the q-subgroup of an Abelian group A. This
shows that the structure of dG is of the form

dG ' G(q1)⊕ · · · ⊕G(q`−1)⊕ dG(q`)⊕ · · · ⊕ dG(qk)

and that

#dG =
`−1∏
i=1

qai
i ·

k∏

i=`

qbi
i ,

for some integers bi’s satisfying bi ≤ ai for i = `, . . . , k. Since dG is a subgroup
of K := 〈S1〉 + dG, we are ensured that #G/#K is whether 1 or greater or equal

— 72 —

4.2. Interactive Proof Protocols

Prover Verifier

pick x ∈ G,
(com, dec)← Commit(x)

com−−−−−−−−−→ pick y ∈ G

finds a1, . . . , as ∈ Zd, r ∈ G
s.t. x + y = dr +

∑s
i=1 aigi

y←−−−−−−−−−
r,a1,...,as,dec,x−−−−−−−−−→ checks

x + y = dr +
∑s

i=1 aigi

1← Open(x, com, dec)

Figure 4.6: Simplified interactive proof for the MGGD problem

to p′. By the existence of f , we know that #G/#K < p ≤ p′ which implies that
G = K.

We can now state the following security results.

Theorem 4.2.11. Let G be an Abelian group and d be an integer with smallest
prime factor p. We consider the parameters S1 = {g1, . . . , gs} ⊆ G and an inte-
ger `. Assuming that the prover has an expert group knowledge of G with S1, the
MGGDproof`(S1) protocol satisfies the following security properties.

1. The MGGDproof protocol is complete.

2. Assuming that Commit is a perfectly hiding trapdoor commitment scheme, the
MGGDproof protocol is perfect black-box straight-line zero-knowledge against
any verifier who has the secret key KV

s associated to Commit.

3. The MGGDproof protocol is sound: from any cheating prover P∗ who passes
the protocol with a set S1 satisfying 〈S1〉 + dG (G with a success probability
Succsd-MGGD

P∗ = ε, there exists an algorithm B which finds a collision on Commit
with a probability Succcom-bnd

B ≥ ε(ε− p−`) by rewinding P∗ once.

Proof.

1. The completeness follows from the expert group knowledge of an honest prover.

2. We consider a simulator B who uses black-box access to the cheating verifier
V∗. They are both assumed to know the secret key KV

s of Commit. The simulator
first picks a tuple x′ := (x′1, . . . , x

′
`) ∈U G` uniformly at random and computes

— 73 —

4. MOVA Undeniable Signature

(com′, dec′) ← Commit(x′,KV
p). He then sends com′ to V∗. The simulator then

receives a tuple y := (y1, . . . , y`) ∈ G`. If it is not the case, the simulator stops the
simulation and outputs the transcript (com′, abort). Otherwise, he picks ri ∈U G,
ai,j ∈U Zd uniformly at random for i = 1, . . . , `, j = 1, . . . , s and computes

zi := dri +
s∑

j=1

ai,jgj for i = 1, . . . , `.

By Lemma 4.1.9, zi is uniformly distributed in G for i = 1, . . . , `. He computes
xi := zi − yi for i = 1, . . . , ` and sets x := (x1, . . . , x`). He computes

dec← Collide(x′, x, com′, dec′,KV
s)

when x 6= x′. Finally, B answers the coefficients ri’s, ai,j’s and opens com′ on
the tuple x by releasing x and dec (dec′ when x = x′). He outputs the transcript
(com′, y, ri’s, ai,j’s, x, dec). We note that the simulator perfectly simulates the be-
haviour of an honest prover. This shows that the transcript distribution produced
by B is identical as the one produced between the honest prover and V∗.

3. Assume that S1 is such that 〈S1〉+ dG (G. We describe a simulator B playing
with the prover P∗ in order to find a collision on Commit. Again, we proceed
similarly as to prove the soundness of GHIproof. B first runs a MGGDproof protocol
with P∗ playing the role of an honest verifier. The transcript of this interaction is
(com, y, ri’s, ai,j’s, x, dec), where y = (y1, . . . , y`) ∈ G` and x = (x1, . . . , x`) ∈ G`.
Then, the simulator rewinds P∗ with the same random tape. This one sends again
com. The simulator picks a tuple y∗ ∈U G` uniformly at random and sends it to
P∗. Finally, the prover sends r∗i , a

∗
i,j, x

∗, dec∗ to B. Note that the simulator perfectly
simulates an honest verifier in both protocol runs.

We now consider a random tape $ and estimate the success probability for B
conditioned by this event. Note that under this restriction both protocol runs are
independent. Let A$ be the probability event that P∗ succeeds in the first run with
the random tape $ and A∗

$ be the same event in the second run. We denote by B$

the event x 6= x∗ with $. Note that the simulator has found a collision on Commit,
when the event A$ ∧ A∗

$ ∧B$ occurs.
At this time, we only consider random tapes $ satisfying ε$:= Pr[A$] > p−`.

Note that a protocol run is completely characterized by the random tape $ and the
challenge y. Since this one is picked uniformly at random, our probability analysis
can be performed by estimating the number of “good” protocol executions. Hence,
we have

Pr[A$ ∧ A∗
$ ∧B$] =

#{(y, y∗) ∈ G` ×G` | P∗ wins in both runs and x 6= x∗}
#G2`

,

— 74 —

4.2. Interactive Proof Protocols

where x (resp. x∗) denotes the released value by the prover in a MGGDproof run
with the random tape $ and challenge y (resp. y∗). We set k := ε$ · #G`. Let
us denote y1, . . . , yk ∈ G`, the k different challenges sent by B which produce the
event A$. Let xj be the corresponding x element for the challenge yj for j = 1, . . . , k.
We define K := 〈S1〉+ dG and m := #K`. For any j = 1, . . . , k, the ` components
of the element xj + yj must lie in the subgroup K := 〈S1〉+ dG. By Lemma 4.2.10,
#K/#G ≤ 1/p, so that k > m. Using the fact that the elements xj + yj’s cannot
take more than m different values, we deduce that

#{j | xj = g} ≤ m for any g ∈ G`.

Namely, the existence of an element g contradicting the above assertion would lead
to more than m values g + yj which should lie in K`. We denote by c1, . . . , ct,
the t different values taken by the elements xj’s and set nj := #{i | xi = cj} for
j = 1, . . . , t. We have

#{(i, j) | xi 6= xj} =
t∑

j=1

nj(k − nj)

and since nj ≤ m for j = 1, . . . , t,

t∑
j=1

nj(k − nj) ≥ (k −m)
t∑

j=1

nj = k(k −m).

From this, we deduce that

Pr[A$ ∧ A∗
$ ∧B$] ≥ k(k −m)

#G2`
≥ ε$ · (ε$ − p−`).

This upper bound obviously holds for any random tape $, since ε$ ≤ p−` leads to
a non positive value for ε$ · (ε$ − p−`). From this, we get

Succcom-bnd
B ≥

∑
$

q$ · ε2
$ − p−` ·

∑
$

q$ · ε$,

where q$ denotes the probability that the protocol runs with the random tape $.
Applying Jensen’s inequality on the first term leads to the desired result.

Remark 4.2.12. Using the techniques of Damg̊ard [46], we can prove that the
MGGDproof protocol is zero-knowledge in the auxiliary string model. The auxil-
iary string is the public key of Commit. The simulator first generates a key pair
for Commit and feeds the verifier with the public key. Then, the simulator uses
the knowledge of the secret key in order to simulate the transcript of the protocol

— 75 —

4. MOVA Undeniable Signature

as above. The main difference in this model is that the public key might be im-
plemented by a trusted third party so that the verifier does not have to possess a
secret key. However, we note that to ensure non-transferability the verifier needs to
possess his own pair of key related to Commit. While it might be interesting here to
make use of a trusted third party, this is not desirable to apply this for GHIproof
and coGHIproof. Namely, non-transferability of both protocols will be crucial when
applied to the MOVA undeniable signature.

Non-Interactive Variant of MGGDproof

Applying the Fiat-Shamir paradigm [58], the MGGDproof protocol can be turned
non-interactive. Namely, the prover can simulate the challenges by himself from a
seed using a pseudorandom generator. In fact, apart from finding representation
of some elements of G, the only thing the prover needs to do is to convince the
verifier that the challenges are drawn uniformly at random. An alternative to the
Fiat-Shamir paradigm would consist in using a trusted third party (trusted by P
and V) to generate challenges uniformly at random. We present in Figure 4.7 a
non-interactive MGGDproof variant without trusted party in the random oracle
model. For this, we need to consider a pseudorandom generator GenM (modeled by
a random oracle) defined on the set {0, 1}km , for some integer km.

NIMGGDproof`(S1)
Parameters: G, d
Input: `, S1 = {g1, . . . , gs} ⊆ G
1: The prover picks seedM ∈U {0, 1}km uniformly at random and us-

ing the pseudorandom generator GenM produces some challenges
x1, . . . , x`. Then, using his expert group knowledge, he finds ri ∈ G
and ai,1, . . . , ai,s ∈ Zd such that xi = dri +

∑s
j=1 ai,jgj for i = 1, . . . , `.

He sends seedM and the coefficients ri’s and ai,j’s to the verifier.
2: Using GenM, the verifier generates x1, . . . , x` from seedM. He checks

that xi = dri +
∑s

j=1 ai,jgj holds for i = 1, . . . , `. If this is the case, the
verifier accepts the proof. Otherwise, he rejects it.

Figure 4.7: Non-interactive proof for the MGGD problem

Security results related to NIMGGDproof are given in the following theorem.

Theorem 4.2.13. Let G be an Abelian group and d be an integer with smallest
prime factor p. We consider S1 = {g1, . . . , gs} ⊆ G and an integer `. Assuming
that GenM is a random oracle and the prover has an expert group knowledge of G
with S1, the NIMGGDproof`(S1) protocol satisfies the following security properties.

— 76 —

4.2. Interactive Proof Protocols

1. The NIMGGDproof protocol is complete.

2. The NIMGGDproof protocol is perfect black-box zero-knowledge2.

3. The NIMGGDproof protocol is sound: for any set S1 such that 〈S1〉+ dG (G,
any cheating prover P∗ limited to qGenM queries to GenM, has a success prob-
ability Succsd-NIMGGD

P∗ ≤ qGenM · p−` + (#G)−`.

Proof.

1. The completeness follows from the expert group knowledge of the prover.

2. We describe a simulator B who simulates the message sent by an honest prover.
Although the verifier V∗ does not send any message here, the simulator needs to
simulate the random oracle GenM which can be queried by V∗. B picks ri ∈U G,
ai,j ∈U Zd uniformly at random and computes

xi := dri +
s∑

j=1

ai,jgj,

for i = 1, . . . , `, j = 1, . . . , s. The simulator picks seedM ∈U {0, 1}km uniformly
at random and adds the pair (seedM, x), where x = (x1, . . . , x`) in a list main-
tained to simulate GenM. Then, the simulator can run V∗ and sends him seedM
and the coefficients ri’s, ai,j’s. B simulates GenM as usual by maintaining a list
of the previous queries and corresponding answers. For any new query, the simu-
lator simply picks the answer uniformly at random. We note that the simulation
is done perfectly since seedM was added in the list before the first query made by V∗.

3. We describe here a simulator B who uses P∗ in order to win the following game.
Game: A challenger picks xi ∈U G uniformly at random for i = 1, . . . , ` and sends
x1, . . . , x` to B. The simulator wins if he is able to find coefficients ri’s and ai,j’s
such that xi = dri +

∑s
j=1 ai,jgj for i = 1, . . . , `.

The simulator first receives x = (x1, . . . , x`) according to the above game and
runs P∗. B picks an integer n ∈U {1, . . . , qGenM} uniformly at random. The GenM
queries made by P∗ are simulated by maintaining a list of the queries and corre-
sponding answers. When the query is not new, B returns the answer stored in the
list. Otherwise, the simulator outputs a uniformly random answer and adds the
new pair in the list. However, we handle the nth query in a special way. Namely,
we answer x to this query (Without loss of generality, we assume that P∗ does not
submit the same query more than once.). Since x was picked uniformly at ran-
dom, B simulates the oracle GenM perfectly. At the end, P∗ outputs a seed seedM

2Note that non-interactive zero-knowledge is anyway straight-line.

— 77 —

4. MOVA Undeniable Signature

and coefficients ri’s and ai,j’s. The simulator forwards the same coefficients to his
challenger.

Let A be the event “B wins the game”. By Lemma 4.2.10, Pr[A] ≤ p−`. We also
note that event A occurs if P∗ sends seedM as nth query made to GenM. Let B
be the event “P∗ queried seedM to GenM” and C be the event “P∗ succeeds”. We
have

Pr[A] =
1

qGenM

· Pr[B ∧ C].

Since GenM is a random oracle,

Pr[¬B ∧ C] ≤ (#G)−`,

because the prover needs to guess x which corresponds to some seedM. Putting all
together leads to

p−` ≥ Pr[A] ≥ 1

qGenM

(
Succsd-NIMGGD

P∗ − (#G)−`
)
,

which concludes the proof.

Remark 4.2.14. Note that zero-knowledge here is not deniable, since we need to
simulate answers of the random oracle GenM.

4.2.4 2-Move Interactive Proofs

This part focuses on some 2-move variants of the GHIproof and coGHIproof pro-
tocols. In order to achieve the different security properties such as zero-knowledge
and soundness the introduction of some random oracles is required.

The variants are achieved by removing the two messages sent in the middle of the
protocols which allow to achieve zero-knowledge through the commitment scheme.
In order to maintain zero-knowledge, the verifier sends a kind of commitment on
a seed which generates the coefficients producing the challenges sent to the prover.
This commitment can be only opened by the prover after this one solved these
challenges. We notably add a trapdoor one-way permutation with associated secret
key KV

s to the verifier. Namely, we consider the permutation TPOW(·,KV
p) and its

inverse TPOW−1(·,KV
s). We denote Succinv-tp

A the probability that an adversary A
can compute TPOW−1(y,KV

s) given a random y, without knowing KV
s . For the sake

of simplicity, we use the same notation TPOW for both protocols. We also need to
introduce a pseudorandom generator GenC (resp. GenD) as well as a cryptographic
hash function denoted Hc (resp. Hd) in this 2-move variant of GHIproof (resp.
coGHIproof). Later, to analyze the security of the protocols these primitives will
be idealized by random oracles.

— 78 —

4.2. Interactive Proof Protocols

The 2-move variants notably have a very similar complexity as the 4-move ones.
In particular, the prover needs to perform the same number of homomorphism evalu-
ations. Actually, in one hand we increase the complexity of one additional evaluation
of each primitive GenC (resp. GenD), Hc (resp. Hd), TPOW for both the prover
and the verifier. On the other hand, we have a gain due to all computations related
to Commit which were required in the 4-move variants.

2-Move Variant of GHIproof

The 2-move variant of GHIproof called 2-GHIproof is given in Figure 4.8.

2-GHIproof`(S)
Parameters: G,H, d
Input: `, S = {(g1, e1), . . . , (gs, es)} ⊆ G×H
1: The verifier picks seedC ∈U {0, 1}kc uniformly at random, and by ap-

plying a pseudorandom generator GenC on this seed, generates values
ri ∈ G and ai,j ∈ Zd for i = 1, . . . , ` and j = 1, . . . , s. He computes
ui = dri + ai,1g1 + · · ·+ ai,sgs, wi = ai,1e1 + · · ·+ ai,ses for i = 1, . . . , `,
and ϑc = TPOW(seedC,KV

p). Using a cryptographic hash function
Hc : {0, 1}∗ → {0, 1}kc , he computes hc := Hc(w1, . . . , w`)⊕ seedC. The
verifier sends u1, . . . , u`, hc and ϑc to the prover.

2: The prover checks whether f(gi) = ei for i = 1, . . . , `. If it is not
the case, he aborts the protocol. Then, he computes vi = f(ui) for
i = 1, . . . , `, seedC′ = Hc(v1, . . . , v`) ⊕ hc. He checks that ϑc =
TPOW(seedC′,KV

p) and that GenC(seedC′) generates values ai,j’s and
ri’s such that ui := dri + ai,1g1 + · · ·+ ai,sgs for i = 1, . . . , `. If not, the
prover aborts the protocol. He then sends seedC′ to the verifier.

3: The verifier accepts the proof if seedC′ = seedC holds. Otherwise, he
rejects it.

Figure 4.8: 2-move interactive proof for the GHID problem

The 2-GHIproof protocol possesses similar security properties as its 4-move vari-
ant, except that assertion 5 of Theorem 4.2.1 cannot be adapted here. The main
reason is due to the fact that the verifier cannot fool the prover by sending chal-
lenges in G of his choice, since the prover does not commit the answers before having
checked that the challenges were correctly generated. Hence, the verifier cannot use
the prover as an oracle of the group homomorphism so that we are unable to apply
the techniques used for GHIproof. The security results are given here.

— 79 —

4. MOVA Undeniable Signature

Theorem 4.2.15. Let G, H be some Abelian groups and ` ∈ N. We denote by d
the order of H and p the smallest prime factor of d. Assume that we are given a
set of points S = {(g1, e1), . . . , (gs, es)} ⊆ G × H such that the elements g1, . . . , gs

H-generate the group G. Assuming that GenC, Hc are random oracles and TPOW is
a trapdoor one-way permutation, the 2-GHIproof`(S) protocol satisfies the following
security properties.

1. The 2-GHIproof protocol is complete.

2. The 2-GHIproof protocol is statistical black-box straight-line zero-knowledge
against any verifier. If the verifier possesses the secret key of TPOW, the
2-GHIproof protocol is perfect black-box straight-line zero-knowledge.

3. The 2-GHIproof protocol is perfect non-transferable.

4. The 2-GHIproof protocol is sound: for any invalid set S (i.e., with no inter-
polating homomorphism), any cheating prover P∗ limited to qHc queries to Hc,
has a success probability Succsd-2GHI

P∗ < Succinv-tp+qHcp
−`, where Succinv-tp is the

maximum of Succinv-tp
A among all adversaries A which have similar complexity

as P∗.

Proof.

1. The completeness follows by noticing that the prover retrieves the right seedC
when f(gi) = ei for i = 1, . . . , `. Namely, we have vi = wi for all i = 1, . . . , ` in this
case.

2. First, we consider that V∗ (and the simulator B) is not given KV
s . B runs the

verifier V∗ and looks at the queries made by V∗ to the oracle GenC. B puts these
qGenC queries seedCk for 1 ≤ k ≤ qGenC as well as the corresponding answers of GenC
in memory. The simulator then receives the first message M of V∗. If this one has
not a correct format, the simulator outputs the transcript (M, abort). Otherwise,
the simulator checks whether one answer among those queries seedCk’s made to
GenC correctly generates the challenges ui’s and the image of this query by TPOW
is equal to ϑc. If it is not the case, B outputs the transcript (u1, . . . , u`, hc, ϑc, abort).
Otherwise, the simulator is able to compute the right wi’s from this answer (the right
ri’s and ai,j’s) namely wi =

∑s
j=1 ai,jej for i = 1, . . . , `. From the wi’s, B computes

seedC∗ := hc ⊕ Hc(w1, . . . , w`) and checks whether seedC∗ generates the right ri’s
and ai,j’s. In the positive case, B outputs the transcript (u1, . . . , u`, hc, ϑc, seedC∗).
In the negative case, it outputs the following transcript (u1, . . . , u`, hc, ϑc, abort).

It remains to show that the two transcript distributions are statistically indis-
tinguishable. When the first message has not a correct format, the two transcripts
are clearly identical. Let consider the case where the verifier did not query any

— 80 —

4.2. Interactive Proof Protocols

seedCk which produces the challenges ui’s and whose image by TPOW leads to ϑc.
In this case, the honest prover does not abort the protocol only if he retrieves a
seedC = H(w1, . . . , w`)⊕hc which generates the challenges ui’s and ϑc. This occurs
only if the verifier V∗ was able to guess that the output values of the query seedC
to the oracle GenC generate the right ri’s and aij’s. Since GenC is a random ora-
cle, no verifier V∗ (even computationally unbounded) can succeed to do that with
a non-negligible probability. We still have to consider the case where the verifier
queried a seedCk which produces the challenges ui’s and ϑc. We see that the two
transcripts are always identical, since the simulator clearly knows the answer of the
honest prover by learning the right wi’s. Therefore, we can conclude that the two
transcript distributions are statistically indistinguishable.

If V∗ is given KV
s , the simulation can be done perfectly as follows. First, B

launches V∗ and receives the first message (which should be u = (u1, . . . , u`), hc, and
ϑc). The simulator computes seedC′ = TPOW−1(ϑc,KV

s) and using GenC generates
coefficients a′ij and r′i and corresponding u′i and w′

i for i = 1, . . . , ` and j = 1, . . . , s.
Then, B checks whether u′i = ui for i = 1, . . . , `, seedC′ = Hc(w

′
1, . . . , w

′
`) ⊕ hc.

If it is the case, B outputs the transcript (hc, w, ϑc, seedC′). Otherwise, it outputs
(hc, w, ϑc, abort). Note that an honest prover would check exactly the same equali-
ties (in a different way) and would answer in the same way. Hence, zero-knowledge
is perfect.

3. The simulator first has a look at the bit telling whether S interpolates in f or not.
If S does not interpolate, the simulator aborts in the second step of the protocol.
Otherwise, he behaves as the simulator in the proof of straight-line zero-knowledge
with a verifier knowing the secret key of TPOW. Namely, this simulation did not use
the random oracle queries of the verifier so that the simulation applies here. Thus,
this works perfectly for the non-transferability as well.

4. Let P∗ be a cheating prover who wants to show that a non-interpolating set S
interpolates in a homomorphism. Without loss of generality, we can assume that P∗

always responds correctly to the verifier whenever he queries seedC to GenC. Indeed,
he can check that seedC is the preimage of ϑc by TPOW and answer seedC to the
challenge if correct. (With an honest verifier, there is no need to check whether the
challenge is valid.) Hence, the verifier always accepts when the prover queries seedC
to GenC. Similarly, we can assume that P∗ always responds correctly to the verifier
whenever he queries the right w = (w1, . . . , w`) to Hc because he can deduce seedC
from hc afterwards. Note that when P∗ interacts with an honest verifier, the verifier
only accepts if P∗ outputs seedC.

We transform P∗ into an algorithm to invert the trapdoor permutation as follows.

1. We receive a random challenge ϑc, whose preimage by TPOW is denoted seedC.

— 81 —

4. MOVA Undeniable Signature

2. We generate some random values ri’s and ai,j’s. We deduce some ui’s and
wi’s and pick a random hc. Then (u, hc, ϑc) is a challenge for the prover. We
simulate GenC as follows: for any query except seedC (we can check whether
a value is seedC by checking that its image by TPOW is ϑc) we simulate a
random oracle as usual i.e., we maintain a list of elements queried to GenC
with corresponding answers and simulate according to this list. If the query is
new, we simply pick the answer uniformly at random and add the pair in the
list. For the query seedC, we stop the overall simulation and yield seedC: the
inversion of ϑc succeeded. We simulate Hc as follows: for any query except w
we simulate a random oracle (like for GenC). For the query w we stop: the
inversion of ϑc failed.

3. We run P∗ according to our simulation rules. If P∗ outputs some value, we
check whether it is seedC. If it is, we output it, otherwise we fail.

The algorithm succeeds to invert the trapdoor permutation at the condition that
either (event A) P∗ succeeds without even querying seedC to GenC nor w to Hc,
or (event B) that P∗ queries seedC to GenC without querying w to Hc beforehand.
Let C be the event that P∗ queries w to Hc before querying seedC to GenC. Since
the simulation is perfect, Pr[A ∪ B] + Pr[C] is the probability that P∗ passes the
protocol with an honest verifier. We have Pr[A ∪ B] ≤ Succinv-tp. Below we exhibit
an upper bound for Pr[C]. To this, we consider a simulator B which plays with P∗

to win the following game.
Game: A challenger picks elements ri’s and ai,j’s uniformly at random and compute
ui = dri+

∑s
j=1 ai,jgj and wi =

∑s
j=1 ai,jej for i = 1, . . . , `. The simulator B receives

the ui’s and wins the game if he finds all the values wi’s.
B simply forwards the received challenges ui’s and picks hc and ϑc uniformly at

random in {0, 1}kc . B simulates the oracle Hc as above, except that he guesses when
the wi’s are queried. For this, he just picks an integer ` ∈ {1, . . . , qHc} uniformly at
random and stops the simulation at the `th query made to Hc. The simulator then
answers the values wi’s. Note that P∗ cannot query seedC to GenC when event C
occurs. The simulation is perfect in the C case provided that ` is correctly guessed.
Thus, we have Pr[D] ≥ 1/qHc · Pr[C], where D denotes the event of winning the
above game. By Lemma 4.1.11, Pr[D] ≤ p−`, which implies

Pr[C] ≤ qHcp
−`.

So, the prover cannot succeed with probability larger than Succinv-tp + qHcp
−`.

Remark 4.2.16. When the non-transferability is not necessary, the 2-GHIproof
protocol can be simplified by removing operations related to TPOW and ϑc. Such
simplified version can be shown to satisfy the same security properties except the
non-transferability using very similar proofs as for Theorem 4.2.15.

— 82 —

4.2. Interactive Proof Protocols

2-Move Variant of coGHIproof

The interactive coGHIproof protocol can be transformed in a 2-move protocol in a
similar way. This variant called 2-coGHIproof is presented in Figure 4.9

2-coGHIproof`(S)
Parameters: G,H, d, p
Input: `, S = {(g1, e1), . . . , (gs, es)} ⊆ G×H, T = {(x1, z1), . . . , (xt, zt)}
1: The verifier picks seedD ∈U {0, 1}kd uniformly at random, and by ap-

plying a pseudorandom generator GenD on this seed, generates val-
ues ri,k ∈ G, ai,j,k ∈ Zd, λi ∈ Zp for i = 1, . . . , `, j = 1, . . . , s,
k = 1, . . . , t. He computes ui,k = dri,k +

∑s
j=1 ai,j,kgj + λixk, wi,k =∑s

j=1 ai,j,kej + λizk for i = 1, . . . , `, and ϑd = TPOW(seedD,KV
p). Us-

ing a cryptographic hash function Hd : {0, 1}∗ → {0, 1}kd , the verifier
computes hd := Hd(λ1, . . . , λ`) ⊕ seedD. Set u := (u1,1, . . . , u`,t) and
w := (w1,1, . . . , w`,t). He sends u, w, hd and ϑd to the prover.

2: The prover computes yk = f(xk) for k = 1, . . . , t and verifies that
yk 6= zk for at least one k. Otherwise, he aborts the protocol. Then,
he computes vi,k := f(ui,k) for i = 1, . . . , `, k = 1, . . . , t. From the
equations wi,k−vi,k = λi(zk−yk), he should be able to find every λi if the
verifier is honest since yk 6= zk for at least one k. The prover computes
seedD′ = Hd(λ1, . . . , λ`)⊕ hd. He checks that ϑd = TPOW(seedD′,KV

p)
and that seedD′ generates coefficients ri,k’s, ai,j,k’s, λi’s such that ui,k =
dri,k +

∑s
j=1 ai,j,kgj + λixk, wi,k =

∑s
j=1 ai,j,kej + λizk for all i and k. If

not, he aborts the protocol. He then sends seedD′ to the verifier.
3: The verifier accepts the proof if seedD′ = seedD holds. Otherwise, he

rejects it.

Figure 4.9: 2-move interactive proof for the co-GHID problem

We obtain similar security results as Theorem 4.2.7 as shown here.

Theorem 4.2.17. Let G, H be some Abelian groups and ` ∈ N. We denote by d
the order of H and p the smallest prime factor of d. Assume that we are given a
set of points S = {(g1, e1), . . . , (gs, es)} ⊆ G × H such that the elements g1, . . . , gs

H-generate the group G and a set T = {(x1, z1), . . . , (xt, zt)} ⊆ G × H. Assuming
that GenD, Hd are random oracles and TPOW is a trapdoor one-way permutation,
the 2-coGHIproof`(S, T) protocol satisfies the following security properties.

1. The 2-coGHIproof protocol is complete.

— 83 —

4. MOVA Undeniable Signature

2. The 2-coGHIproof protocol is statistical black-box straight-line zero-knowledge
against any verifier. If the verifier possesses the secret key of TPOW, the
2-coGHIproof protocol is perfect black-box straight-line zero-knowledge.

3. The 2-coGHIproof protocol is perfect non-transferable.

4. The 2-coGHIproof protocol is sound: for any set T interpolating with S in
a group homomorphism (i.e., with f), any cheating prover P∗ limited to qHd

queries to Hd, has a success probability Succsd-2coGHI
P∗ < Succinv-tp + qHd

p−`,
where Succinv-tp is the maximum of Succinv-tp

A among all adversaries A which
have similar complexity as P∗.

Proof.

1. When T does not interpolate with S, the prover retrieves the correct answer
λ = (λ1, . . . , λ`) and so retrieves the correct seedD by computing hd ⊕Hd(λ).

2. This can be shown exactly as for 2-GHIproof. We follow the proof of assertion 2
of Theorem 4.2.15 except that we replace Hc by Hd, GenC by GenD, seedC by
seedD, hc by hd, ϑc by ϑd. When the verifier is not given the secret key of TPOW,
the simulator can find seedD by looking at the queries made to GenD by the verifier
except with a negligible probability. If the verifier is given the secret key of TPOW,
the simulator can retrieve seedD′ = TPOW−1(ϑd,KV

s) and proceed to the same ver-
ifications as an honest prover. Hence, the simulation is perfect in this case.

3. This proof is very similar to the proof of the non-transferability of 2-GHIproof.
The simulator first checks whether the set T interpolates with S and in the positive
case aborts in the second step of the protocol. Otherwise, the simulator can follow
the simulation done for proving straight-line zero-knowledge of 2-coGHIproof with
a verifier knowing the secret key of TPOW.

4. The soundness can be proved in a similar way as for the 2-GHIproof protocol.
We follow the proof of the assertion 4 of Theorem 4.2.15 except that we replace Hc

by Hd, GenC by GenD, seedC by seedD, hc by hd, ϑc by ϑd. We use the prover to
invert TPOW as for 2-GHIproof with the main difference that we generate here the
challenges u and w using some random values ri,k’s, ai,j,k’s, λi’s. The simulation of
the oracles are also done in the same way and we can detect when seedD is queried
to GenD. We stop the simulation when λ is queried to Hd. By considering similar
events A, B and C, we can show that Pr[A ∪B] + Pr[C] is the probability that P∗

passes the protocol with an honest verifier. We also have Pr[A ∪ B] ≤ Succinv-tp.
Now, the probability that P∗ queries λ to Hd before sending seedD to GenD (event
C) can be upper bounded as follows. We consider a simulator B playing with the

— 84 —

4.3. The MOVA Scheme

prover to win the following game.
Game: A challenger picks some elements ai,j,k’s, ri,k’s, λi’s uniformly at random and
compute ui,k = dri,k +

∑s
j=1 ai,j,kgj +λixk, wi,k =

∑s
j=1 ai,j,kej +λizk for i = 1, . . . , `

and k = 1, . . . , t. The simulator receives the ui,k’s and wi,k’s and wins the game if
he is able to retrieve λ = (λ1, . . . , λ`).

Following again the proof of soundness for 2-GHIproof, B can similarly solve the
above game by picking an integer in {1, . . . , qHd

} uniformly at random to guess when
λ is queried to Hd by P∗. Hence, we have Pr[D] ≥ 1/qHd

· Pr[C], where D is the
event that B wins the above game. It remains to show that no algorithm wins the
above game with a probability greater than p−`. By Lemma 4.1.11, the challenges
ui,k are all uniformly distributed and independent of the value λ. Moreover, since
T interpolates in f , we have wi,k = f(ui,k) for any i and k so that the wi,k’s are
uniquely determined by the ui,k’s. This shows that the challenges in the above game
do not leak any information about λ, which implies that no algorithm can win with
a larger probability than p−`.

Remark 4.2.18. Again, if one is willing to relax the non-transferability of the
protocol 2-coGHIproof, we can slightly modify it by removing computations related
to TPOW.

4.3 The MOVA Scheme

In this section, we develop one of the core results of our thesis. Namely, we present
our undeniable scheme called MOVA which is based on a secret group homomor-
phism. This scheme was first proposed at ASIACRYPT ’04 [107] and was inspired
by a preliminary version restricted to group characters (with a less efficient denial
protocol) presented at PKC ’04 [109].

We now describe the MOVA signature scheme. We consider several setup variants
in order to generate the related signer’s key pair. Depending on the situation one
will be preferred on the others.

Domain Parameters. We let integers Lkey, Lsig, Icon, Iden be security parame-
ters as well as “group types” for Xgroup and Ygroup. The group types should
define what groups and which sizes to use in order to achieve a certain level
of security. An optional parameter Ival ∈ N is used in Setup Variants 3 and 4
below.

Primitives. We use two deterministic pseudorandom generators GenK and GenS
(modeled by some random oracles) which produce elements of Xgroup. De-
pending on whether we consider some 4-move verification protocols or 2-move

— 85 —

4. MOVA Undeniable Signature

protocols, we consider a trapdoor commitment scheme Commit or a trap-
door one-way permutation TPOW. In both cases, the associated pair of key
(KV

p ,KV
s) is that of the verifier.

Setup Variant 1. (signer without expert group knowledge)

The signer selects Abelian groups Xgroup and Ygroup of given types together
with a secret group homomorphism Hom : Xgroup −→ Ygroup. He computes
the order d of Ygroup. He then picks a random string seedK and computes
the Lkey first values (Xkey1, . . . , XkeyLkey) from GenK(seedK) and Ykeyj :=
Hom(Xkeyj), for j = 1, . . . , Lkey.

Setup Variant 2. (signer with a Registration Authority and without expert group
knowledge)

We use here a Registration Authority (RA) whose role consists of making sure
that seedK was randomly selected.

1. The signer selects Abelian groups Xgroup and Ygroup of given type to-
gether with a group homomorphism Hom : Xgroup −→ Ygroup. He
computes the order d of Ygroup. He submits his identity Id together
with Xgroup, Ygroup and d to RA.

2. RA first checks the identity of the signer and that he did not submit too
many registration attempts. He then picks a random string seedK that
is sent to the signer together with a signature C of the data

(Id, Xgroup, Ygroup, d, seedK).

3. The signer computes the Lkey first values (Xkey1, . . . , XkeyLkey) from
GenK(seedK) and Ykeyj := Hom(Xkeyj) for j = 1, . . . , Lkey.

Setup Variant 3. (signer with an expert group knowledge with validity proof of
public key)

In this variant we assume that the signer has an expert group knowledge of
Xgroup. It works exactly like in the Setup Variant 1, but the signer can further
run a MGGDproofIval in order to validate the public key so that Lkey can be
further reduced to the smallest possible one.

Setup Variant 4. (signer with an expert group knowledge with non-interactive
validity proof of public key)

This variant is the same as Setup Variant 3 except that the signer produces
the non-interactive proof NIMGGDproofIval.

— 86 —

4.3. The MOVA Scheme

Public Key. KS
p = (Xgroup, Ygroup, d, seedK, (Ykey1, . . . , YkeyLkey)) with an op-

tional (Id, C) for the variant 2, an optional Ival for the variants 3,4, and an
optional non-interactive proof for the variant 4.

We say that the public key KS
p is valid if {Xkey1, . . . , XkeyLkey} Ygroup-

generate Xgroup.

Secret Key. KS
s = Hom.

Signature Generation. Let m be a message to sign. The signer generates

GenS(m)→ Xsig1, . . . , XsigLsig.

He then computes Ysigk = Hom(Xsigk) for k = 1, . . . , Lsig. The signature is

σ = (Ysig1, . . . , YsigLsig).

It is Lsig · log2 d bits long.

Confirmation Protocol. Let (m,σ) be a supposedly valid message-signature pair.
Both the signer and the verifier (signature’s recipient) compute the elements
Xkey1, . . . , XkeyLkey from the signer’s public key. They also generate

GenS(m)→ Xsig1, . . . , XsigLsig.

The signer playing the role of the prover runs GHIproofIcon with the verifier
on the set

S = {(Xkeyj, Ykeyj) | j = 1, . . . , Lkey} ∪ {(Xsigk, Ysigk) | k = 1, . . . , Lsig}.

Alternatively, they can run 2-GHIproofIcon on the same set S.

Denial Protocol. Let (m,σ′) be an alleged invalid message-signature pair. We
denote

σ′ = (Zsig1, . . . , ZsigLsig).

The signer and the verifier compute Xkey1, . . . , XkeyLkey from the public key
as well as GenS(m) → Xsig1, . . . , XsigLsig. The signer playing the role of the
prover run coGHIproofIden with the verifier on the sets

S = {(Xkeyj, Ykeyj) | j = 1, . . . , Lkey}

and
T = {(Xsigk, Zsigk) | k = 1, . . . , Lsig}.

Alternatively, they can run 2-coGHIproofIcon on the same sets S and T .

— 87 —

4. MOVA Undeniable Signature

Remark 4.3.1. The main goal of the setup variants is to ensure that the ele-
ments (Xkey1, . . . , XkeyLkey) must Ygroup-generate Xgroup in order to ensure non-
repudiation of signatures. Otherwise, a malicious signer might use a different homo-
morphism interpolating also in the set {(Xkey1, Ykey1), . . . , (XkeyLkey, YkeyLkey)} to
deny a signature. The above property actually guarantees the unicity of the secret
key. In Setup Variant 1, Lkey must be large enough so that it is impossible to mali-
ciously select a key which does not fullfil this condition. In the variant 2, Lkey can
be reduced since we assume the RA does not attempt to generate an invalid key. In
the variant 3 and 4, Lkey can be maximally reduced since the signer selects seedK
such that a minimal number of elements Xkey1, . . . , XkeyLkey produces a valid key.
With appropriate instantiations, the two last variants often lead to Lkey = 1 or 2.

Apart from the different setup variants, we can consider two main variants for
the confirmation and denial protocols. The one with 4-move confirmation and denial
protocols is called 4-move MOVA, while the other one with 2-move confirmation and
denial protocols is called 2-move MOVA.

4.4 Security Properties

We devote this part to present the security results related to the MOVA scheme. We
first assume that the key generated in the different setup variants is valid and prove
the security of 2-move (resp. 4-move) MOVA under this assumption. We postpone
the security analysis of the setup variants in Subsection 4.4.3.

4.4.1 2-Move MOVA Scheme

Here, we prove that the 2-move version of the MOVA scheme satisfies the security
properties mentioned in Section 3.3. The proofs of resistance against forgery attacks
and invisibility were inspired from Kurosawa and Heng [86].

Theorem 4.4.1. Let S = {(Xkey1, Ykey1), . . . , (XkeyLkey, YkeyLkey)} and e denote
the natural logarithm base. Assuming that GenC, GenS, GenD, Hd, and Hc are
random oracles, that signer’s public key is valid, and that TPOW is a trapdoor one-
way permutation, the MOVA scheme with 2-move confirmation and denial protocols
satisfies the following security properties.

1. The confirmation (resp. denial) protocol is complete.

2. Let p be the smallest prime factor of d. The confirmation (resp. denial)
protocol is sound: for any invalid (valid) message-signature pair, any cheating

— 88 —

4.4. Security Properties

signer S∗ limited to qHc (resp. qHd
) queries to Hc (resp. Hd), is such that the

probability
Succsd-con

S∗ < Succinv-tp + qHcp
−Icon

(resp. Succsd-den
S∗ < Succinv-tp + qHd

p−Iden), where Succinv-tp is the maximum of
Succinv-tp

A among all adversaries A which have similar complexity as S∗.

3. The confirmation (resp. denial) protocol is statistical black-box straight-line
zero-knowledge in the random oracle model.

4. The confirmation (resp. denial) protocol is perfect non-transferable.

5. Consider the Lsig-S-GHI problem with the same parameters as for the MOVA
scheme, i.e., G = Xgroup, H = Ygroup. Assume that for any solver B with a
given complexity, we have

SuccLsig-S-GHI
B ≤ ε.

Then, any forger F with similar complexity using qS signing queries and qV

queries to the confirmation/denial oracle wins the existential forgery game
under an adaptive chosen-message attack with a probability

Succef-cma
F ≤ e(1 + qS)(1 + qV)ε.

6. Consider the Lsig-S-GHID problem with the same parameters as for the MOVA
scheme, i.e., G = Xgroup, H = Ygroup. Assume that for any algorithm B
with a given complexity, we have

AdvLsig-S-GHID
B ≤ ε and SuccLsig-S-GHI

B ≤ ε′.

Then, any distinguisher D with similar complexity using qS signing queries and
qV queries to the confirmation/denial oracle wins the invisibility game under
a chosen-message attack with advantage

Advinv-cma
D ≤ e(1 + qS)(ε + 2e(1 + qV)ε′).

Proof. First, we note that assertions 1-4 are direct consequences of Theorem 4.2.15
and Theorem 4.2.17. It suffices only to notice that a MOVA message-signature pair
(m,σ) is valid iff the corresponding set {(Xsig1, Ysig1), . . . , (XsigLsig, YsigLsig)} in-
terpolates with S in the unique homomorphism Hom.

5. Let F be a forger who succeeds to existentially forge a signature under an adaptive
chosen-message attack with a non-negligible probability ε. We will construct an
algorithm B which solves the Lsig-S-GHI problem with

S := {(Xkey1, Ykey1), . . . , (XkeyLkey, YkeyLkey)}

— 89 —

4. MOVA Undeniable Signature

using the forger F and the verifier’s secret key KV
s . At the beginning, B receives

the challenges x1, . . . , xLsig ∈ Xgroup of the Lsig-S-GHI problem. Then, B runs
the forger and simulates the queries to the random oracle GenS, qS queries to the
signing oracle Sign and qV queries to the denial/confirmation oracle Ver. We can
assume that all messages sent to Sign resp. Ver were previously queried to GenS
(since the oracle Sign resp. Ver has to make such queries anyway). B simulates the
oracles GenS and Sign as follows.

GenS. For each message m queried to GenS, B maintains a list of each message
and corresponding answer (m, Xsig1, . . . , XsigLsig). If the message was already
queried, B outputs the corresponding answer from the list. Otherwise, he
picks ai,j ∈U Zd and ri ∈U Xgroup uniformly at random for i = 1, . . . , Lsig,
j = 1, . . . , Lkey. With probability q, he answers

Xsigi := dri +

Lkey∑
j=1

ai,jXkeyj for i = 1, . . . , Lsig.

We call it type-1 answer. With probability 1− q, the answer is

Xsigi := dri + xi +

Lkey∑
j=1

ai,jXkeyj for i = 1, . . . , Lsig.

We call it type-2 answer. For each message, B keeps the coefficients ai,j’s
and ri’s and answer type in memory. Note that the simulation is perfect by
Lemma 4.1.9, since the public key is valid.

Sign. For a message m, if the answer to the GenS query of m was of type-1, then
B answers Ysigi :=

∑Lkey
j=1 ai,jYkeyj for i = 1, . . . , Lsig. Otherwise, it aborts

the simulation.

Let (mi, σi) denote the ith query to Ver for 1 ≤ i ≤ qV and (mqV +1, σqV +1) denote
the F output. In order to simulate the answers of the queries made to Ver, B guesses
the smallest i such that (mi, σi) is a valid forged pair (i.e., mi was not queried to
Sign). To this, B simply picks ` uniformly at random in {1, . . . , qV + 1}. B deals
with the ith query as follows.

i < `. To any query (mi, σi), B checks whether mi was submitted to Sign. If it
is the case, B is able to decide whether (mi, σi) is valid and simulates the
appropriate protocol. Otherwise, B guesses that (mi, σi) is invalid and simulate
the appropriate protocol. The simulation is done perfectly as in the proof of
non-transferability of the confirmation (resp. denial) protocol. For this, see
the proof of the assertion 3 of Theorem 4.2.15 and Theorem 4.2.17.

— 90 —

4.4. Security Properties

i = `. Let (m`, σ`) := (m`, Ysig1, . . . , YsigLsig). If the corresponding Xsigi’s were of
type-1, B aborts. Otherwise, when ` was correctly guessed

Ysigi = yi +

Lkey∑
j=1

ai,jYkeyj for i = 1, . . . , Lsig

and B is able to deduce the yi’s of the Lsig-S-GHI problem.

It remains to compute the probability that B retrieves the yi’s and did not abort.
For this, we can assume that mqV +1 was queried to GenS, since the probability of
guessing the output of GenS is negligible. This event occurs if B is able to simulate all
Sign queries, guess the right ` and use the message m` to deduce the yi’s. Therefore,

Pr[B succeeds|F succeeds] = qqS(1− q)/(qV + 1).

As for the full-domain hash technique [43] and as in [86], the optimal value for q is
qopt = qS/(qS + 1). Thus, the success probability is

SuccLsig-S-GHI
B =

(
1− 1

1 + qS

)qS ε

(1 + qS)(1 + qV)

which admits the lower bound (1/e(1 + qS)(1 + qV))ε.

6. Let D be a distinguisher which breaks the invisibility of the MOVA scheme
with an advantage ε. We construct an algorithm B which solves the Lsig-S-GHID
problem by using D and KV

s . At the beginning, B is challenged with a tuple
{(x1, y1), . . . , (xLsig, yLsig)} ∈ (Xgroup × Ygroup)Lsig for which it has to determine
whether Hom(xi) = yi for all 1 ≤ i ≤ Lsig or if this tuple was picked uniformly at
random. Like for the proof of the existential forgery, the simulator B runs D and
simulates the queries made to the random oracle GenS, qS queries to the signing
oracle Sign and the queries to the denial/confirmation oracle Ver. We can assume
that each message queried to Sign or Ver was previously queried to the random
oracle GenS. We assume that no query m to Ver was submitted to Sign beforehand.
(Otherwise, we can just simulate them with KV

s .) Let Forge be the event in which D
sends a valid message-signature pair to Ver. We first remove all instances for which
the event Forge occurs. So, we can now assume that D never submits any valid pair
(m,σ) to Ver. B simulates the oracles just like in the proof of unforgeability with
` = qV + 1 (we excluded valid forged pairs).

After a given time, the distinguisher D sends a message m∗ to the challenger
of the invisibility game which is simulated by B. If the answer of m∗ to GenS
was of type-1, B aborts the simulation. Otherwise, it sends the challenge signature
(Ysig∗1, . . . , Ysig∗Lsig) where Ysig∗i := yi +

∑Lkey
j=1 ai,jYkeyj for 1 ≤ i ≤ Lsig. Then, D

continues to query the oracles which are simulated by B as above.

— 91 —

4. MOVA Undeniable Signature

Finally, D outputs a guess bit b′. The simulator B outputs the same bit b′ as
guess bit to the Lsig-S-GHID challenger or a random bit when B aborted.

Using the homomorphic property of Hom, we deduce that the set {(xi, yi)}Lsig
i=1

interpolates in a group homomorphism with the set of points S if and only if
(m∗, Ysig∗1, . . . , Ysig∗Lsig) is a valid message-signature pair. Hence, when the sim-
ulator does not abort and the event Forge does not occur, B perfectly simulates the
invisibility games. It remains to compute the advantage of B.

For a bit b, we denote Ab the probability event that B does not abort when
the challenge to B was of the form Tb (thus, B simulates the game Gameinv-cma-b

to D). Note that the probability Pr[A1] = Pr[A0] can be bounded in an optimal
way as in the proof of existential forgery attacks, namely, by choosing q adequately
we get Pr[A1] ≥ (1/e(1 + qS)). We now define the events Bb and Db which occur
when B and D respectively outputs the bit 0 when the challenge was of the form Tb.
Note that if Ab happens, both events Bb and Db occurs simultaneously. Let us
denote ε0 resp. ε1, the probability for D to output 0 in the game Gameinv-cma-0 resp.
Gameinv-cma-1. We now estimate Pr[B0|A0] and Pr[B1|A1] with respect to ε0 and ε1.
To this end, we notice that the event B0|A0 resp. B1|A1 occurs simultaneously
with the event where D outputs 0 in the game Gameinv-cma-0 resp. Gameinv-cma-1,
provided that the event Forge does not occur. Hence, applying the difference lemma
of Shoup [138] leads to

|Pr[Bb|Ab]− εb| ≤ Pr[Forge]

for b = 0, 1. From this, we can deduce that Pr[B0|A0] ≥ ε0 − Pr[Forge] and
Pr[B1|A1] ≤ ε1 + Pr[Forge]. Here, we can assume that Pr[B0] ≥ Pr[B1]. The
advantage of B is then equal to

Pr[B0]− Pr[B1] = Pr[¬A0] · (Pr[B0|¬A0]− Pr[B1|¬A1])

+ Pr[A0] · (Pr[B0|A0]− Pr[B1|A1]).

Since Pr[B0|¬A0] = Pr[B1|¬A1] = 1/2 and ε0 − ε1 = Advinv−cma
D , we finally have

AdvLsig-S-GHID
B ≥ 1

(1 + qS)e

(
Advinv−cma

D − 2 Pr[Forge]
)
.

We can conclude by noting that Forge occurs with a probability bounded from above
by e(1 + qS)(1 + qV)ε′ by assertion 5.

Remark 4.4.2. Similarly to Laguillaumie and Vergnaud [88], the efficiency of the
security reduction for the existential forgery can be improved (factor (1 + qV)−1

is removed) by replacing the GHI problem by its gap variant [119]. This problem
consists in solving the GHI problem using an access to an oracle which solves the
corresponding GHID problem. This one helps to simulate the confirmation and
denial oracles. So, we do not need to guess ` ∈ {1, . . . , qV + 1} to simulate these
oracles correctly.

— 92 —

4.4. Security Properties

Remark 4.4.3. MOVA scheme can be made probabilistic so that the invisibility
notion defined in Galbraith and Mao [62] is satisfied. To this, it suffices to append
some randomness r to the message to sign and to add r in the signature. The
drawback is that the signature enlarges.

4.4.2 Security of the 4-Move MOVA Scheme

We present security properties of the 4-move MOVA scheme in the security model
of Section 3.3.

Theorem 4.4.4. Let S = {(Xkey1, Ykey1), . . . , (XkeyLkey, YkeyLkey)} and e denote
the natural logarithm base. Assuming that the signer’s public key is valid and GenS is
a random oracle, the MOVA signature scheme with 4-move confirmation and denial
protocols satisfies the following security properties.

1. The confirmation (resp. denial) protocol is complete.

2. Let p be the smallest prime factor of d. The confirmation (resp. denial)
protocol is sound. From any cheating signer S∗ who passes the confirmation
(resp. denial) protocol on an invalid (resp. valid) signature with a probability
Succsd-con

S∗ = ε and an expert group knowledge of Xgroup, we can construct an
algorithm B which finds a collision on the commitment scheme with a proba-
bility

Succcom-bnd
B = ε(ε− p−Icon)

(resp. ε(ε− p−Iden)) by rewinding S∗ once.

3. With a perfectly hiding trapdoor commitment, the confirmation (resp. denial)
protocol is perfect black-box straight-line zero-knowledge.

4. With a perfectly hiding trapdoor commitment, the confirmation (resp. denial)
protocol is perfect non-transferable.

5. Consider the Lsig-S-GHI problem with the same parameters as for the MOVA
scheme, i.e., G = Xgroup, H = Ygroup. Assume that for any solver B with a
given complexity, we have

SuccLsig-S-GHI
B ≤ ε.

Then, any forger F with similar complexity using qS signing queries and qV

queries to the confirmation/denial oracle wins the existential forgery game
under an adaptive chosen-message attack with a probability

Succef-cma
F ≤ e(1 + qS)(1 + qV)ε.

— 93 —

4. MOVA Undeniable Signature

6. Consider the Lsig-S-GHID problem with the same parameters as for the MOVA
scheme, i.e., G = Xgroup, H = Ygroup. Assume that for any algorithm B
with a given complexity, we have

AdvLsig-S-GHID
B ≤ ε and SuccLsig-S-GHI

B ≤ ε′.

Then, any distinguisher D with similar complexity using qS signing and qV

queries to the confirmation/denial oracle queries wins the invisibility game
under a chosen-message attack with advantage

Advinv-cma
D ≤ e(1 + qS)(ε + 2e(1 + qV)ε′).

Proof. The assertions 1-4 directly follow from Theorem 4.2.1 and Theorem 4.2.7.
The unforgeability and invisibility proofs work exactly as for the 2-move version
of MOVA, except that we simulate the confirmation and denial oracles according
to the simulator used to show non-transferability of the 4-move confirmation and
denial protocols. Again, the simulation of these oracles is done perfectly. For more
details, see the proof of the assertion 3 of Theorem 4.2.1 and Theorem 4.2.7.

4.4.3 Security of the Setup Variants

Before stating our security results on the setup variants 1 and 2, we need to introduce
the following technical lemma.

Lemma 4.4.5. Let A be a finite Abelian p-group such that

A ' Zpe1 ⊕ Zpe2 ⊕ · · · ⊕ Zpek .

for some integers 0 < e1 ≤ e2 ≤ · · · ≤ ek. Set e :=
∑k

i=1 ei. The number of maximal
subgroups of A, i.e., of order pe−1 is equal to

pk − 1

p− 1
.

Proof. According to some results in combinatorial theory (see Butler [29]), the num-
ber of subgroups of A of order p` is equal to those of order pe−`, for any integer ` < e.
Hence, our problem can be solved by enumerating all subgroups of A of order p. For
this, we consider all elements of A of order p. Since any group Zpei contains exactly
p elements of order p or which are 0 for i = 1, . . . , k, we have pk − 1 elements in A
of order p (we just need to remove the neutral element). To conclude, it suffices to
remark that any subgroup generated by an element of order p is in fact generated
by p− 1 such elements.

— 94 —

4.4. Security Properties

We now state our security result related to Setup Variants 1 and 2.

Theorem 4.4.6 (Setup Variants 1,2). Let Xgroup, Ygroup be some Abelian groups,
and d the order of Ygroup. Given a prime q, we let Aq be the subgroup of Xgroup
of any element whose order is a power of q. Given q there exists a unique sequence
of integers aq,1 ≤ · · · ≤ aq,kq such that Aq is isomorphic to Zqaq,1 ⊕ · · ·⊕Zq

aq,kq . The
probability Pgen that some elements Xkey1, . . . , XkeyLkey ∈U Xgroup picked uniformly
at random Ygroup-generate Xgroup satisfies

Pgen ≥
∏

q∈Pd

(
1− qkq − 1

(q − 1) · qLkey

)
,

where Pd is the set of all prime factors of gcd(#Xgroup, d).

Proof. By Lemma 4.1.3, we need to study the probability to generate the quo-
tient group Xgroup/(d · Xgroup) with some elements picked uniformly at random.
Classical results on the structure of Abelian groups (see Appendix A.1) states the
decomposition

Xgroup ' Ap1 ⊕ · · · ⊕ Apn .

Note that
Xgroup/(d · Xgroup) ' Ap1/dAp1 ⊕ · · · ⊕ Apn/dApn .

We consider Bq := Aq/dAq and study the probability that elements generate this
group. If gcd(d, q) = 1, then dAq = Aq and Bq is trivial. So, we only focus on the
q’s that divide d and denote eq the largest integer such that qeq |d. We deduce that
the structure of Bq satisfies

Bq ' Zqaq,1 ⊕ · · · ⊕ Zqaq,r ⊕ Zqeq ⊕ · · · ⊕ Zqeq ,

where r is the largest integer such that aq,r < eq. The probability Pq that Lkey
elements does not generate Bq is equal to the probability that these elements stay in
one of the maximal subgroups of Bq. By Lemma 4.4.5, the number of such subgroups
is equal to (qkq − 1)/(q − 1). Therefore,

Pq ≤ qkq − 1

(q − 1) · qLkey
.

Since these events are independent for the different Bq’s, the final probability is
obtained by multiplying the terms 1− Pq.

Remark 4.4.7. As an application, if d is prime and if the d-subgroup of Xgroup is
a product of k cyclic groups, we have Pgen ≥ 1− (dk−1)/(d−1) ·d−Lkey. In practice,
we will rarely have k greater than 2 so that we approximately have a probability of
1− d−Lkey+1.

— 95 —

4. MOVA Undeniable Signature

4.4.4 Security Parameters

Signature Parameters.

Security results on the unforgeability and the invisibility of MOVA given in The-
orem 4.4.1 (and also Theorem 4.4.4) allows to directly derive some bounds on the
signature size provided certain assumptions on the GHI and GHID problems. We
emphasize here, that the hardness of solving some GHI and GHID problems can
often be scaled by adjusting the size of Xgroup independently of Ygroup.

For instance, consider Xgroup = Z∗n with n = pq for two large primes p, q and
the Legendre symbol (·/p). Breaking the corresponding GHI problem corresponds
here to break the quadratic residuosity assumption. Moreover, as far as we know
there does not exist any algorithm which solves this problem more efficiently than
factoring the modulus n, which only depends on Xgroup.

As illustrated with the above example, the advantage of the MOVA scheme is
the scalable signature size depending on the required security. This one precisely
depends on the adversary computational resources (as well as the number of allowed
queries to the oracles), the hardness of the GHI and GHID problems and the security
we want to achieve. We assume here that Xgroup is adjusted such that

SuccLsig-S-GHI
B ≈ d−Lsig and AdvLsig-S-GHID

B ≈ 0,

for all algorithms B with similar complexity as the adversary. This leads to

Succef-cma
F ≈ eqSqV d−Lsig and Advinv-cma

D ≈ 2e2qSqV d−Lsig.

Since the verification of an undeniable signature must be done online, we can consider
some security probabilities of about 2−20 instead of the classical offline security of
2−80. In Table 4.1, we give the required MOVA signature size in order to achieve
Succef-cma

F ≈ 2−20 depending on qS and qV . Similar results in order to achieve
Advinv-cma

D ≈ 2−20 are presented in Table 4.2.

qS qV Lsig · log2(d) bits

210 210 42
210 220 52

220 210 52
220 220 62

Table 4.1: Signature size with unforgeability of 2−20

— 96 —

4.4. Security Properties

qS qV Lsig · log2(d) bits

210 210 44
210 220 54

220 210 54
220 220 64

Table 4.2: Signature size with invisibility of 2−20

Protocol Parameters

Results for the soundness of the 2-move confirmation and denial protocols can be ob-
tained using the assertion 2 of Theorem 4.4.1. Under the assumption Succinv-tp ≈ 0,
we obtain

Succsd-con
S∗ ≈ qHcp

−Icon and Succsd-den
S∗ ≈ qHd

p−Iden.

For instance, we can achieve a soundness probability of 2−20 with the parameters
Icon = Iden = 60/ log2(p), qHc = qHd

= 240. Similarly, for the 4-move protocols, we
assume that Commit satisfies

Succcom-bnd
B ≈ 0

for any algorithm B with similar complexity as the adversary. This shows that

Succsd-con
S∗ ≈ p−Icon and Succsd-den

S∗ ≈ p−Iden,

which leads to some smaller parameters Icon and Iden. Namely, for a soundness
probability of 2−20, we get Icon = Iden = 20/ log2(p).

Setup Parameters

We examine here the size of parameters of the different setup variants according to
their specificity. First, we note that security of Setup Variant 1 and 2 is directly
deduced from the results of Theorem 4.4.6. The main difference is simply due to the
number of attempts the adversary can perform until he gets some “bad” elements
Xkey1, . . . , XkeyLkey. In the first variant, the signer can try as many attempts as he
can so that we require an “offline” probability Pgen ≥ 1− 2−80, while in the second
one he is very limited so that we require an “online” probability Pgen ≥ 1 − 2−20.
Assuming similar assumptions as in Remark 4.4.7, we get Lkey = 81/ log2(d) for
Setup variant 1 and Lkey = 21/ log2(d) for Setup Variant 2. This means that the
tuple (Ykey1, . . . , YkeyLkey) which is contained in the public key would be 81 and
21 bits long respectively. For Setup Variant 3, we derive security bounds from the
results obtained for MGGDproof given in Theorem 4.2.11. As for the soundness of
the confirmation and denial protocols, we get a probability that the signer passes
the protocol with an invalid public key of 2−20 with Ival = 20/ log2(p) assuming

— 97 —

4. MOVA Undeniable Signature

that no efficient adversary breaks the computationally binding property of Commit.
Finally, Theorem 4.2.13 gives results for Setup Variant 4. Since Xgroup is usually
greater than p, we have

Succsd-NIMGGD
P∗ ≈ qGenM · p−Ival,

which leads to a probability of 2−20 with qGenM = 260 and Ival = 80/ log2(p).

4.5 Additional Properties

We briefly discuss two additional properties of the MOVA scheme, one may desire
under certain circumstances.

4.5.1 Batch Verification

We point out that the MOVA scheme allows a batch verification of signatures.
Indeed, the confirmation protocol can be easily adapted in order to confirm several
signatures at the same time by putting all pairs (Xsigk, Ysigk) in a single set S.
We propose a batch confirmation protocol in which the prover performs a batch
verification of the valid message-signature pairs among those sent by the verifier.
This protocol is depicted in Figure 4.10.

BatchConf`(SIG)
Parameter: KS

p , `
Input: A set of message-signature pairs SIG = {(m1, σ1), . . . , (ms, σs)}

supposedly valid with respect to the MOVA scheme’s public key KS
p .

1: The prover and the verifier generate GenS(mi) → Xsigi
1, . . . , Xsigi

Lsig

and directly retrieve Ysigi
1, . . . , Ysigi

Lsig from the signa-
ture σi for i = 1, . . . , s. They also both retrieve the set
SK := {(Xkey1, Ykey1), . . . , (XkeyLkey, YkeyLkey)} from KS

p .

2: For any i = 1, . . . , s, the prover checks whether Hom(Xsigi
j) = Ysigi

j

for all j = 1, . . . , Lsig. He puts in memory all indices (i1, . . . , ik) =: I
which do not satisfy this property and sends them to the verifier.

3: The prover and the verifier perform GHIproof`(SIG′ ∪ SK), where the
set SIG′ corresponds to SIG without the message-signature pairs whose
index is in I.

Figure 4.10: Batch confirmation protocol

— 98 —

4.5. Additional Properties

Security results related to GHIproof given in Theorem 4.2.1 directly applies
to this batch variant. In particular, the prover cannot pass the protocol with a
probability greater than p−` if SIG′ contains an invalid signature and assuming that
the commitment is binding. However, note that the prover may send some indices
corresponding to valid signatures. To avoid this, the verifier can subsequently require
to perform denial protocols to the signatures corresponding to these indices. In
addition to the clear gain in terms of rounds, this technique allows to decrease the
computational complexity mainly for the prover. Namely, when all signatures are
valid, the prover has `(s− 1) less homomorphism evaluations to perform compared
to a sequential verification of all signatures. This is particularly important to focus
on the prover’s complexity, since one prover is likely to share several verifiers in most
practical applications.

The denial protocol can be modified similarly to show that at least one signature
is invalid among a bunch of signatures using one protocol run. However, a batch
version of the denial protocol is not likely to be used for concrete applications, since
we usually want to precisely know which signatures are invalid.

4.5.2 Selective Convertibility

We show here how a signer with an expert group knowledge of Xgroup with the
set S1 = {Xkey1, . . . , XkeyLkey} can convert a given MOVA signature in a uni-
versally verifiable signature. From a valid message-signature (m, σ) with σ =
(Ysig1, . . . , YsigLsig) the signer finds some coefficients ri ∈ Xgroup and ai,j ∈ Zd

for i = 1, . . . , Lsig, j = 1, . . . , Lkey such that

Xsigi = dri +

Lkey∑
j=1

ai,jXkeyj for i = 1, . . . , Lsig. (4.13)

The converted signature is σconv := (σ, ri’s, ai,j’s). The verification of converted pair
(m,σconv) consists in retrieving the Xsigi’s from m and verifying Equation (4.13)
and the following equation

Ysigi =

Lkey∑
j=1

ai,jYkeyj for i = 1, . . . , Lsig.

Note that this holds if and only if σ is a valid MOVA signature. Although the
conversion may be useful in some applications, the major drawback is that the
converted signature is usually quite large. Moreover, the advantage of this method
compared to signing the message m with another universally verifiable signature
is not clear at all. In other words, the link between the converted signature and
the regular MOVA signature does not seem to be crucial. In general, converting a

— 99 —

4. MOVA Undeniable Signature

signature is performed to allow the recipient to verify the authenticity of the message
without the help of the signer.

— 100 —

Chapter 5
Characters on Z∗n and Applications to
MOVA

Group characters on Z∗n played a central role in the development of MOVA scheme
since the first variant of the scheme [109] was based on this sole concept. They are
typical examples of homomorphisms with a very small range allowing to basically
produce MOVA signatures of any size depending on a security parameter. Thereby,
they perfectly illustrate the full scalability of MOVA signatures. In this chapter, we
focus on characters of order 2, 3, 4 which arise naturally from the theory of quadratic,
cubic, and biquadratic residuosity, respectively. So, characters of small order defined
on Z∗n can be seen as a natural generalization of the Legendre symbol and related
problems generalize the quadratic residuosity problem.

We also want to mention that characters were already used in public-key cryp-
tography for the design of algorithms as well as a useful tool in security proofs.
Namely, the former is illustrated by the design of public-key cryptosystems due to
Scheidler and Williams [135,136]. The latter is a recent result due to Okamoto and
Stern [120] who used the theory of characters to complete the security proof of the
signature scheme ESIGN [117].

This chapter mainly deals with the theoretical aspects of characters and their
implications to the MOVA scheme. After an introduction of the theoretical back-
ground, we show how to select characters which are particularly relevant for MOVA
instantiations. Related computational problems are presented in the subsequent
section as well as a treatment of the reductions (we could exhibit) between one an-
other. Then, as a rather purely theoretical interest, we focus on a special variant
which does not make use of prime numbers. Finally, we examine the concept of
expert group knowledge in this setting clarifying how to use Setup Variants 3 and 4
with these MOVA instantiations.

5. Characters on Z∗n and Applications to MOVA

5.1 Characters on Z∗n
In this section, we introduce the notion of multiplicative characters. Although char-
acters can be defined on any group, we concentrate here on Z∗n. Namely, characters
based on another kind of group will not be considered for MOVA instantiations. In
particular, our treatment will focus on the characters of order 2, 3, and 4. Most
of the material developed in this section is taken from the book of Ireland and
Rosen [79] and that of Nathanson [114].

Definition 5.1.1. Let G be a finite Abelian group. A character χ on G is a group
homomorphism from G to (C\{0}, ·), i.e., a map χ : G→ C\{0} satisfying

χ(a + b) = χ(a)χ(b)

for any a, b ∈ G.

From the definition of a character, we can quickly deduce that χ(1) = 1 and
that the value χ(a) is always a λ(G)th root of the unity for all a ∈ G, where λ(G)
denotes the exponent of the group G, i.e., the maximal order an element of G can
have. A group structure can be defined on the set of all characters on G. In this
group, the product (group operation) χ1χ2 of two characters χ1 and χ2 is defined
by

χ1χ2(a) = χ1(a)χ2(a)

for all a ∈ G. Similarly, the inverse χ−1 of a character χ is defined by

χ−1(a) = χ(a)−1

for any a ∈ G. The group of the characters defined on G is called the dual group of
G and is denoted Ĝ. The structure of this group is given by the following theorem.

Theorem 5.1.2 ([114], pp. 129). A finite Abelian group G is isomorphic to its dual,
i.e.,

G ' Ĝ.

In the rest of this section, we restrict to the multiplicative group G = Z∗n.
Applying the above results to Z∗n shows that χ(a) is a λ(n)th root of the unity
for any a ∈ Z∗n and any character χ defined on Z∗n. We also note that a character
can be naturally extended on the whole ring Zn by setting χ(a) = 0 for any non
invertible element a. From Theorem 5.1.2, we readily get a characterization of the
characters on Z∗n. This result for a prime n is given here.

Corollary 5.1.3. Let p be a prime and d be an integer such that d|p− 1.

1. The group of characters defined on Z∗p is a cyclic group of order p− 1.

— 102 —

5.1. Characters on Z∗n

2. The characters on Z∗p of order dividing d form a cyclic subgroup of order d.

A proof of this corollary which does not make use of Theorem 5.1.2 can be found
in Chapter 8 of [79].

The second part of this corollary is especially interesting for us, because we will
consider characters of small order (e.g., 2, 3, 4). In addition, we deduce that a
character on Z∗p of order d maps the elements of Z∗p to the set

{ζj
d | j = 0, . . . , d− 1},

where ζd denotes the unit e2πi/d and i :=
√−1.

In the following subsections we present additional material which is specific to
the cases d = 2, 3, 4.

5.1.1 Characters of Order 2

Let p be an odd prime. By Corollary 5.1.3, we know that there are only two
characters on Z∗p of order dividing 2, namely the trivial character ε that maps every
elements to 1 and the Legendre symbol. We recall that the Legendre symbol (a/p)
for an integer a with gcd(a, p) = 1, is 1 if a is congruent to a square modulo p
(quadratic residue) and −1 if it is not the case (quadratic non-residue). It turns out
that there are p−1

2
quadratic residues resp. non quadratic residues in Z∗p.

For an odd integer n, the Jacobi symbol (a/n) for an a ∈ Z with gcd(a, n) = 1
is defined as (

a

n

)
=

(
a

p1

)i1

·
(

a

p2

)i2

· · ·
(

a

pk

)ik

,

where the factorization into primes of n is pi1
1 · · · pik

k . The main properties of the
Jacobi symbol are given below.

Proposition 5.1.4. Let p be an odd prime, a, b ∈ Z and an odd n ∈ Z. The
following properties hold.

1. a(p−1)/2 ≡ (a/p) (mod p).

2. Multiplicativity: (ab/n) = (a/n)(b/n).

3. Modularity: If a ≡ b (mod n), then (a/n) = (b/n).

4. Law of Quadratic Reciprocity: If a and b are odd and positive, we have(
a

b

)(
b

a

)
= (−1)

a−1
2
· b−1

2 .

5. Complementary Reciprocity Law: (2/n) = (−1)
n2−1

8 .

We emphasize that the above result shows that the Legendre symbol is a well
defined homomorphism on Z∗p.

— 103 —

5. Characters on Z∗n and Applications to MOVA

5.1.2 Characters of Order 3

From now on, we assume some basic knowledge about integral domains, Euclidean
domains, and related notions such as irreducible and prime elements. A short re-
minder about these notions is developed in Appendix A.2.

Eisenstein Integers

Here, we introduce the ring of Eisenstein integers. Indeed, this ring is the natural
structure to study the characters of order 3 or the cubic residuosity. Most of the
results below are taken from Chapter 9 of Ireland and Rosen [79].

In what follows, ω will denote the complex number

ω =
−1 +

√−3

2
.

Note that ω is a non trivial cube root of 1 and satisfies ω2 + ω + 1 = 0. We define
the ring of the Eisenstein integers as the set

Z[ω] := {a + bω | a, b ∈ Z}
with the classical operations (addition, multiplication) inherited from C.

For an element α ∈ Z[ω], we define the norm N(α) = αᾱ, where ᾱ denotes the
complex conjugate of α. This is the classical (squared) norm induced by the complex
plane. From this definition, we have

N(a + bω) = a2 − ab + b2.

It can be shown that Z[ω] is an Euclidean domain with respect to this norm. Hence,
it is a unique factorization domain (see Appendix A.2), i.e., every element can be
decomposed in a product of prime elements uniquely up to a unit. Note that the
units (invertible elements) of Z[ω] are ±1, ±ω, ±ω2. This leads that any non zero
element in Z[ω] has 6 associates. We write α ∼ β if two elements α and β are
associates. The greatest common divisor is defined up to an associate. So, we will
always use the notation gcd(α, β) ∼ γ to say that γ is a greatest (with respect to
| · |) common divisor of α and β. To avoid some confusion, a prime of Z will be
called a rational prime when the context is not clear. The classification of all prime
numbers of Z[ω] is given below.

Proposition 5.1.5. The following statements describe all primes of Z[ω] (up to a
unit).

1. Let p be a rational prime such that p ≡ 1 (mod 3). There exists a prime π
satisfying

N(π) = ππ̄ = p.

— 104 —

5.1. Characters on Z∗n

2. If q is a rational prime such that q ≡ 2 (mod 3), then q is also a prime in Z[ω].

3. 1− ω is prime and N(1− ω) = 3.

Note that the above list contains implicitly all the related associate elements as
well. The ideal generated by a σ ∈ Z[ω] is denoted by (σ) and is equal to σ · Z[ω].
The following proposition provides a characterization of the ring of residue classes
modulo a prime.

Proposition 5.1.6. Let π be a prime in Z[ω]. Then Z[ω]/(π) is a finite field with
N(π) elements.

In addition, when N(π) = p is a rational prime with p ≡ 1 (mod 3), we can
prove that the set {0, 1, 2 . . . , p − 1} forms all representatives of the residue class
field Z[ω]/(π).

Cubic Residue Character

We are now in position to define a generalization of the Legendre symbol of order 3.

Proposition 5.1.7. Let π be a prime such that N(π) 6= 3 and α ∈ Z[ω] such that
π - α. There exists a unique integer i ∈ {0, 1, 2} such that

α
N(π)−1

3 ≡ ωi (mod π). (5.1)

Definition 5.1.8. Let α and π be as in Proposition 5.1.7. The cubic residue char-
acter of α modulo π is the element ωi given by (5.1). It is denoted χπ(α) or (α/π)3.

Remark that χπ(α) = 1 if and only if α is a cubic residue modulo π, i.e., there
exists x ∈ Z[ω] such that x3 ≡ α (mod π). We can extend the cubic residue
character by setting χπ(α) = 0, for any α ≡ 0 (mod π).

Let α and β be in Z[ω] with 3 - N(β). Assume the prime factorization of β is
u

∏k
i=1 πei

i where N(πi) 6= 3 for all 1 ≤ i ≤ k and u is a unit. Then the Jacobi-like
symbol χβ(α) (also denoted (α/β)3) is defined as

χβ(α) =
k∏

i=1

χπi
(α)ei .

In order to formulate the law of cubic reciprocity, we have to introduce the concept
of “primary”.

Definition 5.1.9. We say that an element α of Z[ω] is primary if α ≡ −1 (mod 3).

— 105 —

5. Characters on Z∗n and Applications to MOVA

Note that the term “primary” does not only apply to prime numbers. Every
element α such that 1− ω - α possesses exactly one associate that is primary. This
notion allows to choose exactly one associate among the possible 6. This is similar
as choosing the sign of an element in Z. The analog notion of “primary” in Z is the
notion of negative integer.

Theorem 5.1.10. Let α, α′, β be some Eisenstein integers such that gcd(α, β) ∼
gcd(α′, β) ∼ 1 and 1− ω - β. The following properties hold.

1. Modularity: If α ≡ α′ (mod β), then χβ(α) = χβ(α′).

2. Multiplicativity: χβ(αα′) = χβ(α)χβ(α′).

3. Law of Cubic Reciprocity: If α and β are primary, then

χβ(α) = χα(β).

4. Complementary Reciprocity Laws: For a primary σ = 3(a + bω) − 1 with
a, b ∈ Z, we have

χσ(ω) = ωa+b and χσ(1− ω) = ω2a.

The above treatment on the cubic residuosity allows us to define the characters
of order 3 on Z∗p for a rational prime p. We consider only the case where p ≡ 1
(mod 3), since the characters are trivial otherwise. Set p = ππ̄. Recall first that
the field Z[ω]/(π) can be represented by Z∗p since the set {0, 1, . . . , p − 1} contains
all representatives and the multiplications are equivalent in both cases. Thus, the
cubic residue character χπ is naturally defined on Z∗p. We directly deduce that χ2

π is
another non trivial character of order 3 and is equal to χπ̄ on the rational integers.

5.1.3 Characters of Order 4

Gaussian Integers

Studying the characters of order 4 consists mainly in the theory of biquadratic
residuosity. This one is quite similar to that of cubic residuosity and arises in the
ring of Gaussian integers

Z[i] := {a + bi | a, b ∈ Z}.

The norm of an element α = a + bi is defined by

N(α) = α · ᾱ = a2 + b2,

— 106 —

5.1. Characters on Z∗n

where ᾱ denotes the complex conjugate of α. Z[i] is well known to be Euclidean
which implies that the factorization is unique up to a unit (see Appendix A.2).
The units (invertible elements) of Z[i] are ±1, ±i, which implies that any non zero
element has 4 associates. Again, we use the symbol ∼ to say that two Gaussian
integers are associate and the greatest common divisor of two Gaussian integers
is uniquely defined up to an associate. The classification of all primes of Z[i] is
provided here.

Proposition 5.1.11. The following statements describe all primes of Z[i] (up to a
unit).

1. Let p be a rational prime such that p ≡ 1 (mod 4). There exists a prime π
satisfying

N(π) = ππ̄ = p.

2. If q is a rational prime such that q ≡ 3 (mod 4), then q is also a prime in Z[i].

3. 1 + i is prime and N(1 + i) = 2.

Proposition 5.1.12. Let π ∈ Z[i] be a prime. Then, Z[i]/(π) is a finite field with
N(π) elements.

As for Z[ω], if N(π) = p is a rational prime with p ≡ 1 (mod 4), the set
{0, . . . , p− 1} form all representatives of Z[i]/(π).

Quartic Residue Character

To prepare the definition of the quartic residue character, we first consider the
following result.

Proposition 5.1.13. Let π be a prime such that N(π) 6= 2 and α ∈ Z[i] such that
π - α. There exists a unique integer 0 ≤ j ≤ 3 satisfying

α
N(π)−1

4 ≡ ij (mod π). (5.2)

Definition 5.1.14. Let α and π be as in Proposition 5.1.13. The quartic residue
character of α modulo π is the element ij given by (5.2). It is denoted χπ(α) or
(α/π)4.

Note that χπ(α) = 1 is equivalent to show that α is a quartic residue modulo π.
The quartic residue character can also be trivially extended on any α ≡ 0 (mod π)
by setting χπ(α) = 0. We define the corresponding Jacobi-like character by setting

χβ(α) =
k∏

j=1

χπj
(α)ej

— 107 —

5. Characters on Z∗n and Applications to MOVA

for any α, β ∈ Z[i] such that 1+i - β and where u
∏k

j=1 π
ej

j is the prime decomposition
of β.

Definition 5.1.15. An element α ∈ Z[i] is primary if α ≡ 1 (mod (1 + i)3). If we
set α = a + bi, this is equivalent to

a ≡ 1, b ≡ 0 (mod 4) or a ≡ 3, b ≡ 2 (mod 4).

One can prove that any element α with 1+ i - α has a unique primary associate.

Theorem 5.1.16. Let β = a + bi, α and α′ be some Gaussian integers such that
gcd(β, α) ∼ gcd(β, α′) ∼ 1 and (1 + i) - β. The following properties hold.

1. Modularity: If α ≡ α′ (mod β), then χβ(α) = χβ(α′).

2. Multiplicativity: χβ(αα′) = χβ(α)χβ(α′).

3. Quartic Reciprocity Law: If α and β are primary,

χα(β) = χβ(α) · (−1)
N(α)−1

4
·N(β)−1

4 .

4. Complementary Reciprocity Laws: If β is primary,

χβ(i) = i
N(β)−1

4 and χβ(1 + i) = i
a−b−b2−1

4 .

From the above theory, we can find the characters of order dividing 4 on Z∗p.
Note that p leads to 4 characters only if p ≡ 1 (mod 4) by Corollary 5.1.3. Oth-
erwise, the group of characters is trivial or is composed of the characters of or-
der 2 if p ≡ 3 (mod 4). Such a p is the norm of a prime element π. Since the set
{0, 1, . . . , p− 1} is a complete set of representatives of Z[i]/(π), the character χπ is
also well defined on Z∗p. Moreover, χπ generates the group of all characters on Z∗p of
order dividing 4. We note that χ2

π is the Legendre symbol (·/p)2 and that χ3
π = χπ̄.

5.1.4 Characters of Higher Order

It is possible to extend our character constructions to some orders greater than 4.
This is done by introducing a power residue symbol defined on the integers of a
cyclotomic field. A general treatment of these cases would be beyond the scope
of this work. Moreover, the computation seems to be more difficult to deal with
and the ring of these integers becomes a non unique factorization domain when the
order is large. Since such a ring is not a principal ideal domain, we should work
with ideals that are generated by more than one element. However, we do not
loose the existence of the reciprocity laws, namely there exists a so called Kummer’s
reciprocity law (see the textbook of Lemmermeyer [94]).

— 108 —

5.2. Instantiations for the MOVA Scheme

5.2 Instantiations for the MOVA Scheme

We provide a way to define certain multiplicative characters on Z∗n for an n = pq
being the product of two primes. So, we will consider MOVA instantiations with
Xgroup = Z∗n. The way of defining all characters on Z∗n is mainly based on the
following result.

Lemma 5.2.1 ([114], pp. 128). Let G be a finite Abelian group and let G1, . . . , Gk

be subgroups of G such that G = G1 ⊕ · · · ⊕ Gk. For every character χ ∈ Ĝ, there
exist unique characters χi ∈ Ĝi such that if g ∈ G and g = g1 + · · ·+ gk with gi ∈ Gi

for i = 1, . . . , k, then
χ(g) = χ1(g1) · · ·χk(gk).

Moreover,
Ĝ ' Ĝ1 ⊕ · · · ⊕ Ĝk.

From this result and Chinese Remainder Theorem on Z∗n, we deduce that any
character on Z∗n can be defined from any characters on Z∗p and Z∗q. The corresponding
character on Z∗n can be obtained in the same way as the Jacobi symbol is defined
from the Legendre symbol. To illustrate this technique, assume we have an integer
d such that d|p− 1 and d|q − 1. From two characters χ1 and χ2 of order dividing d
defined on Z∗p respectively Z∗q, the character χ of order dividing d is obtained from

χ(a) := χ1(a mod p) · χ2(a mod q).

for any a ∈ Z∗n. Lemma 5.2.1 ensures that all characters χ on Z∗n of order dividing
d can be defined in this way.

For any character χ of order d we will associate a logarithm function denoted as
logχ. We set ζd := e2πi/d. For an element a ∈ Z∗n, we know that χ(a) is of the form

ζj
d for a j ∈ {0, 1, . . . d−1}. We define logχ(a) := logζd

(χ(a)) which is equal to this j.
Hence, the homomorphism logχ has the associated range group Ygroup = Zd.

5.2.1 Characters of Order 2

Here, p and q stands for any different odd primes. From the above discussion, we
deduce that the complete list of characters of order 2 on Z∗n is (·/p), (·/q), (·/n) and
the trivial character. Note that the properties given in Proposition 5.1.4 are used
in order to compute the Jacobi symbol (·/n) in a time complexity of O(log(n)2).
Furthermore, note that the ability to compute (·/p) (without knowing p) is equiva-
lent to the ability to compute (·/q) and implies to solving the quadratic residuosity
problem.1

1We point out that security of the first semantically secure public-key cryptosystem proposed
by Goldwasser and Micali [73] is based on this problem.

— 109 —

5. Characters on Z∗n and Applications to MOVA

5.2.2 Characters of Order 3

Let p, q be two different rational odd primes such that p ≡ q ≡ 1 (mod 3) and π,
σ ∈ Z[ω] such that N(π) = p and N(σ) = q. Set n = pq. The character on Z∗n
produced by χπ and χσ is denoted by χπσ and is defined by

χπσ(a) = χπ(a) · χσ(a).

The other characters are defined exactly in the same multiplicative way. There are
8 non trivial characters of order 3 defined on Z∗n, namely χπ, χπ̄, χσ, χσ̄, χπσ, χπ̄σ,
χπσ̄ and χπ̄σ̄. Without loss of generality, it suffices to consider only χπ and χπσ.

Here, we explain how these characters can be found2. The main problem consists
in finding a prime π ∈ Z[ω] such that N(π) = p ≡ 1 mod 3 for a given rational odd
prime p. We first show that −3 is a quadratic residue modulo p. Namely, from the
law of quadratic reciprocity we have

(−3

p

)
= (−1)

p−1
2

(
p

3

)
(−1)

p−1
2
· 3−1

2 =

(
1

3

)
= 1.

Therefore, we can find a square root u of −3 modulo p and we obtain the following
equation on Z[ω]

u2 + 3 = (u + 1 + 2ω)(u− 1− 2ω) = kp

for an integer k. Since p > 2, we deduce that p - u + 1 + 2ω and p - u − 1 − 2ω,
which shows that gcd(u + 1 + 2ω, p) is not trivial. Thus, we choose

π = gcd(u + 1 + 2ω, p).

We mention that u can be computed by the algorithm of Tonelli and Shanks which
computes the square root of any quadratic residue modulo a prime. Details about
this algorithm can be found in the book of Cohen [42]. Note also that computing
the gcd can be done with the classical Euclid algorithm, since Euclidean division
exists in Z[ω].

We would now like to summarize another method for finding π. It is based on
solving the equation a2 − ab + b2 = p with respect to the integer variables a and b.
By making the change of variables s = 2a − b and t = b, a and b can be found by
solving the equation

s2 + 3t2 = 4p.

Applying the modified Cornacchia algorithm allows to solve this equation and to
find a and b. The details about this algorithm are given in the book of Cohen [42].

Once cubic residue characters are found, they can be evaluated using properties
of Theorem 5.1.10. Namely, based on these properties algorithms with quadratic
complexity were developed. As an example, we refer to Damg̊ard and Frandsen [48].

2This method is very similar as the proof of Proposition 9.1.4 of Ireland and Rosen [79]

— 110 —

5.2. Instantiations for the MOVA Scheme

5.2.3 Characters of Order 4

We consider two rational primes p and q such that p ≡ q ≡ 1 (mod 4) and π, σ ∈
Z[i] such that N(π) = p and N(σ) = q. We set n = pq. All the characters of
order dividing 4 defined on Z∗n are generated by χπ and χσ. If we exclude the
trivial character and those of order 2 (Legendre and Jacobi symbols), it remains 12
characters of order 4. In this thesis, we will only work with χπ and χπσ.

We show below how these characters can concretely be found. To this end, we
first find an integer u which is a square root of −1 modulo p. Such a u always exists
since (−1/p) = (−1)(p−1)/2 = 1 whenever p ≡ 1 (mod 4). From this, we get the
equality (on Z[i])

u2 + 1 = (u + i)(u− i) = kp

for an integer k. We note that p > 1 implies that p - u + i and p - u − i. Hence,
gcd(u + i, p) cannot be trivial and we can choose

π = gcd(u + i, p).

As for the characters of order 3, u can be computed by the algorithm of Tonelli
and Shanks and the gcd can be found using the classical Euclid algorithm, since
Euclidean division exists in Z[i]. It is also worth to mention that π = a + bi can
be found by solving the equation a2 + b2 = p in a and b using the algorithm of
Cornacchia (see also Cohen [42]). Moreover, efficient algorithms using properties of
Theorem 5.1.16 evaluate quartic residue characters in O(log(n)2). These algorithmic
aspects will be treated more precisely in Chapter 6.

5.2.4 A Variant with Two Levels of Secret

We discuss in this part special characters with two levels of secret. We consider the
characters of the form χπσ as defined in the previous subsections. Such characters
can be of order 3 or 4 depending on whether π and σ are picked in Z[ω] or in Z[i].
We point out that the knowledge of the value α := πσ does not easily lead to the
factorization of n = N(α). This shows that a signer may have the ability to generate
MOVA signatures without factorization knowledge of n. The latter provides expert
group knowledge of Z∗n with some appropriate set. Details about this precise point
will be given in Section 5.5. At this time, it is only important to remark that we have
two levels of secrecy, a partial one allowing to generate, confirm and deny MOVA
signatures while the second allows also to convert signatures.

In addition to the academic and conceptual interest of such a property, a possible
useful application is illustrated with the following scenario. We consider a mobile
delegate of a company who signs some pre-agreement on some contracts or trans-
actions using χπσ which can be confirmed by a server of the company. Later, the

— 111 —

5. Characters on Z∗n and Applications to MOVA

delegate sends a report to his company, which then can issue an ordinary signature
for a final agreement by converting the signature of the delegate. In such a scenario,
even if the delegate loses his key or it is stolen, he can contact the company before a
confirmation of the signature is performed. In any case, the company never converts
a signature before being convinced that the delegate key was not lost or stolen. This
is ensured by waiting on the report sent by the delegate.

As for selective convertibility, we need a concrete situation where it is important
that the MOVA signature is converted. Otherwise, the company can simply generate
an ordinary signature with respect to another algorithm such as DSA or ECDSA.

5.3 On the Hardness of Related Problems

Here we present some different computational problems related to character instan-
tiations in MOVA. Again, we focus this treatment to the case of characters of order
d ∈ {2, 3, 4} defined on Z∗n. However, the results presented below do not only restrict
to an RSA modulus n = pq but usually hold for a general integer n.

Here, for two problems P and P ′, we use some Karp reductions, i.e., we say that
P is at most as hard as P ′ or equivalently P reduces to P ′ if the problem P can be
solved in polynomial time by using only one access to an oracle OP′ which solves P ′.
We denote this fact by P ≤K P ′. This is also equivalent to say that P ′ is at least
as hard as P . We say also that two problems P and P ′ are equivalent if P ≤K P ′
and P ′ ≤K P are satisfied. We denote this property by P ≡K P ′.

Let ζd = e2πi/d with d equal to 2, 3, 4 and denote Hd the set {ζj
d | j = 0, . . . , d−1}.

Below we develop different computational problems.

FACT (Factorization in Z)

Input: An integer n ∈ Z.

Problem: Find the factorization of n in Z.

CYCLOFACTd (Factorization in Z[ζd])

Input: An element σ ∈ Z[ζd].

Problem: Find the factorization of σ.

ROOT(−3) (Square Root of -3 modulo n)

Input: n ∈ Z such that −3 is a square modulo n.

— 112 —

5.3. On the Hardness of Related Problems

Problem: Find a u ∈ Z such that u2 ≡ −3 (mod n).

ROOT(−1) (Square Root of −1 modulo n)

Input: n ∈ Z such that −1 is a square modulo n.

Problem: Find a u ∈ Z such that u2 ≡ −1 (mod n).

FERMATd (Finding an Element of a Given Norm)

Input: n ∈ Z such that n = αᾱ for an α ∈ Z[ζd].

Problem: Find α.

MOVAd (MOVA Problem)

Parameters: Let n ∈ Z and a set of points {(αi, hi) | i = 1, . . . , s} ⊆ Z∗n × Hd

be such that there exists a unique character χ of order d with χ(αi) = hi for
i = 1, . . . , s.

Input: x ∈ Z∗n.

Problem: Compute χ(x).

Remark 5.3.1. The MOVA problem can be seen as a non-probabilistic variant
of the 1-S-GHI problem with a set of points S which interpolates uniquely in a
character of order d. We will usually consider an RSA modulus n = pq, αi’s which
H-generate Z∗n for any group H of order d, and take a “hard character” χ. By “hard
character” we mean a nontrivial character and for d = 2 we also exclude the Jacobi
symbol (·/n). Note that if n is an RSA modulus, the MOVA problem corresponds to
the quadratic residuosity problem for d = 2 if we restrict the input to the elements
with a Jacobi symbol equal to 1. See also Landrock [90] for another cryptographic
application of Fermat numbers (i.e., FERMAT4 and ROOT(−1)).

Remark 5.3.2. Note that −3 is not necessarily invertible modulo n in the problem
ROOT(-3). So, it is not ensured that −3 formally fullfils the definition of a quadratic
residue modulo n. It is trivially the case under the assumption gcd(n, 3) = 1. On
the other hand, −1 is obviously a quadratic residue modulo n in ROOT(-1).

The following technical lemma provides assumptions on n such that the existence
of a solution of a ROOT problem implies existence of the corresponding FERMAT
problem and vice versa.

— 113 —

5. Characters on Z∗n and Applications to MOVA

Lemma 5.3.3. Let n ∈ Z, the following assertions hold.

1. If n 6≡ 2 (mod 4) and −3 is a square modulo n, there exists an α ∈ Z[ω] such
that N(α) = n.

2. If n is square free and is of the form n = N(α) for an α ∈ Z[ω], then −3 is a
square modulo n.

3. If −1 is a quadratic residue modulo n, there exists an element α ∈ Z[i] such
that N(α) = n.

4. If n is square free and is of the form n = N(α) for an α ∈ Z[i], then −1 is a
quadratic residue modulo n.

Proof.

1. By assumption, there exists an integer u such that u2 ≡ −3 (mod n). We can
rewrite this equality in Z[ω] as

kn = (u +
√−3)(u−√−3) = (u + 1 + 2ω)(u− 1− 2ω),

for an integer k. If π ∈ Z[ω], is a common prime of n and u + 1 + 2ω, its conjugate
π̄, must also divide n and u− 1− 2ω. This shows that we have

gcd(n, u + 1 + 2ω) = gcd(n, u− 1− 2ω),

when the gcd are carefully chosen among the possible associates. We now show that
α = gcd(n, u + 1 + 2ω) has the desired property. To this end, we remark that the
only integer greater to 1 which may divide u+1+2ω is 2. Since n 6≡ 2 (mod 4), we
have n odd or 4|n. Since 2 is a prime in Z[ω], 2|n implies that 2|α and 2|ᾱ so that
4|n. Note also that no greater power of 2 can divide n. Hence, except 2, all primes
dividing n are splitted in two parts so that one lies in α while the other one lies in
ᾱ. If the factor 4 occurs in n, we have a factor 2 in α and ᾱ appearing exactly once
in each term. Putting all together shows that n = αᾱ.

2. If we write α = a + bω, we have

n = a2 − ab + b2. (5.3)

Since n is square free, it must hold that gcd(a, n) = gcd(b, n) = 1. To show this,
suppose the existence of a rational prime p such that p|n and p|a. It follows that p|b2

and since p is prime we also have p2|b2 and p2|a2, which leads to the contradiction
p2|n. From Equation (5.3), we get

4n = (2a− b)2 + 3b2.

— 114 —

5.3. On the Hardness of Related Problems

and since b is invertible modulo n, we finally obtain

(
(2a− b)b−1

)2 ≡ −3 (mod n).

3. By assumption, we have an integer u such that u2 ≡ −1 (mod n). This can be
rewritten in Z[i] as follows

kn = (u + i)(u− 1),

for an integer k. We note that no integer greater than 1 divides u + i and u − i.
So, as for the proof of the assertion 1, we have any prime factors of n which split in
two conjugate terms so that one part divides u+ i while the other one divides u− i.
Thus, choosing α := gcd(n, u + i) gives the desired result.

4. Let α := a + bi for some integers a and b. As for assertion 2, we can show that
gcd(a, n) = gcd(b, n) = 1 since n is square free. By assumption, we have n = a2 +b2.
If we consider this equation modulo n, we finally get (ab−1)2 ≡ −1 (mod n).

Remark 5.3.4. Note that the assumption n 6≡ 2 (mod 4) in the assertion 1 is
required. To see this, it suffices to consider n = 14 and remark that 52 ≡ −3
(mod 14). Since 2 is a prime in Z[ω], the existence of a decomposition n = αᾱ
would imply that 4|14 which is a contradiction.

We now exhibit some reductions between the above problems. All relations are
summarized in Figure 5.1. However, we note that the Karp equivalence between the
ROOT problems and the FERMAT ones only hold under additional assumptions
on n.

Proposition 5.3.5. For d = 2, 3, 4, we have the following Karp reductions running
in polynomial time with respect to log(n) and log(N(σ)).

1. FACT ≡K CYCLOFACTd.

2. MOVAd ≤K CYCLOFACTd.

3. FERMATd ≤K CYCLOFACTd.

4. If n is square free and n 6≡ 2 (mod 4), then FERMAT3 ≡K ROOT(−3).

5. If n is square free, then FERMAT4 ≡K ROOT(−1).

— 115 —

5. Characters on Z∗n and Applications to MOVA

at least as hard as ...

FERMATMOVA

ROOT(−1)

(d=3) (d=4)

ROOT(−3)

CYCLOFACTFACT

Figure 5.1: Karp reductions related to the MOVA problem

Proof.

1. We first show FACT ≤K CYCLOFACT3. By sending n to the oracle solving
CYCLOFACT3, we receive a decomposition of the form

n = u · (1− ω)2i ·
k∏

j=1

πj ·
∏̀
j=1

qj,

where the πj’s have a rational prime norm N(πj) = pj and the qj’s are already ra-
tional primes. To find the rational prime decomposition of n, it suffices to combine
the terms πj’s having the same norm together and to replace (1 − ω)2i by 3i. By
adjusting u according to this process, we finally get u = 1 or −1 since n is a classical
integer. A very similar reduction can be performed for d = 4.

FACT ≥K CYCLOFACTd. Let σ ∈ Z[ζd] be an element to factorize. We compute
n = N(σ) and send n to the oracle solving FACT. We then get the rational prime fac-
torization n =

∏k
j=1 pj. When d = 3, any pj ≡ 1 (mod 3) or equal to 3 is not prime

in Z[ω]. For pj = 3, we simply split it using the formula 3 = −ω2(1 − ω)2. When
pj ≡ 1 (mod 3), we need to compute the prime πj ∈ Z[ω] satisfying N(πj) = pj.
This can be done as in Subsection 5.2.2. When d = 4, any pj ≡ 1 (mod 4) or
equal to 2 is not prime in Z[i]. Using the equation 2 = −i(1 + i)2 allows to split 2
and as in Subsection 5.2.3, we can find πj ∈ Z[i] such that N(πj) = pj. Once the

— 116 —

5.3. On the Hardness of Related Problems

factorization of N(σ) in Z[ζd] is completed, it remains to test which prime factors
of N(σ) divide σ. This is determined by computing some gcd. So, we can find all
non trivial primes dividing σ and therefore the factorization of σ.

2. We factorize n using an oracle access and get n =
∏k

i=1 pai
i , where the pi’s are

different primes. Applying Chinese Remainder Theorem, we obtain the decomposi-
tion

Z∗n ' Z∗pa1
1
⊕ · · · ⊕ Z∗

p
ak
k

. (5.4)

Note that any group Z∗
p

ai
i

is cyclic except when pi = 2 and ai ≥ 3. In this case, for

an integer a ≥ 3, we have the isomorphism

Z∗2a ' Z2 ⊕ Z2a−2 . (5.5)

A proof of this statement is given in Nathanson [114] (see pp. 96). So, if 8|n we
decompose Z∗n in k + 1 cyclic subgroups. Otherwise, we content ourselves with
the decomposition given in (5.4). By Lemma 5.2.1, any character on Z∗n can be
decomposed in a product of characters defined on the groups Z∗

p
ai
i

for i = 1, . . . , k

respectively. Moreover, since d is a prime power, any character on Z∗n of order
dividing d can be uniquely decomposed in such a product of characters of order
dividing d. As seen in Section 5.1, for any pi 6= 2, one can readily find a computable
character χi defined on Z∗pi

which generates the group of all characters defined on Z∗pi

of order dividing d. Furthermore, we remark that χi can be canonically extended
on Z∗

p
ai
i

so that it also generates the group of characters defined on Z∗
p

ai
i

of order

dividing d. We now handle the special case p1 = 2 and consider only a1 ≥ 3 since
the other cases are obvious. Looking at the decomposition given in (5.5), we deduce
that two characters on Z∗2a are required to generate all characters of order dividing
d with d 6= 3. We characterize them here and show how they can be computed.
First, we use a result given in Nathanson [114] (see pp. 96) stating that 5 is of
order 2a−2 in Z∗2a and that any element u ∈ Z∗2a can be written u = (−1)i5j for
some unique i ∈ {0, 1} and j ∈ {0, . . . , 2a−2 − 1}. If we consider the application
which assigns to any u ∈ Z∗2a the pair (i, j) ∈ Z2⊕Z2a−2 , we obtain a description of
the isomorphism given in (5.5). If d = 3, we note that the only character of order
dividing d defined on Z∗2a is the trivial one. Otherwise, for d = 2 or 4, all characters
of order dividing 4 defined on Z∗2a are generated by two characters χ0 and χ1. For
the sake of simplicity, we work now with the “logarithmic” version of the characters
defined as in Section 5.2. Namely, we denote logχ := logζd

◦χ for any character χ.
We define logχ0

as the function assigning i mod 2 and logχ1
as the function assigning

j mod 4 to an input u = (−1)i5j. Note that logχ0
(u) can be easily determined by

computing u mod 4 since u ≡ (−1)i (mod 4). Computing j mod 4 can be achieved
by looking for an e ∈ {0, 1, 2, 3} satisfying (5eu)2a−4 ≡ 1 (mod 2a). Then, we set
j mod 4 = 4− e to obtain the desired result.

— 117 —

5. Characters on Z∗n and Applications to MOVA

We have shown in the above discussion that any character χ defined on Z∗n of
order d can be uniquely decomposed as a unique product

χ = χb0
0 χb1

1 · · ·χbk
k ,

where bi ∈ {0, . . . , d − 1} for any i = 0, . . . , d − 1. Moreover, it was shown that
any character χi is efficiently computable if the factorization is known. It remains
to show a way to find the bi’s coefficients. Since χ is uniquely defined by the pairs
(αj, hj) for j = 1, . . . , s, we can retrieve the bi’s by solving the following system of
linear equations

logχ(αj) =
k∑

i=0

bi logχi
(αj) for j = 1, . . . , s.

This directly leads to the description of the character χ, allowing to compute it
efficiently therefrom and to solve the MOVA problem.

3. We factorize n in Z[ζd] using one oracle access. Then, we remove one half of
the primes of the obtained decomposition by carefully keeping the corresponding
conjugate. By multiplying the remaining primes, we get α such that N(α) = n.

4. FERMAT3 ≤K ROOT(−3). We receive an integer n and have to find an
α ∈ Z[ω] such that n = αᾱ. Since n is square free, we know that −3 is a square
modulo n by the assertion 2 of Lemma 5.3.3. So, we can send n to the oracle solving
ROOT(-3) and get back an integer u such that u2 ≡ −3 (mod n). As for proving
the assertion 1 of Lemma 5.3.3, we can retrieve α by computing gcd(n, u + 1 + 2ω).

FERMAT3 ≥K ROOT(−3). Here, we are given an integer n such that −3 is a
square modulo n and have to find an integer u such that u2 ≡ −3 (mod n). By as-
sertion 1 of Lemma 5.3.3, we know that there exists an α = a+ bω ∈ Z[ω] such that
n = a2 − ab + b2 since n 6≡ 2 (mod 4). We send n to the oracle solving FERMAT3

so that we receive a and b. As in the proof of the assertion 2 of Lemma 5.3.3, we
can show that choosing u = (2a− b)b−1 mod n leads to the desired result. Note that
the assumption for n to be square free is used to show that b is invertible modulo n.

5. FERMAT4 ≤K ROOT(−1). Let n of the form n = N(α) for an α ∈ Z[i]
and square free. By assertion 4 of Lemma 5.3.3, −1 is quadratic residue modulo
n. We send n to the oracle solving ROOT(-1) and receive an integer u such that
u2 ≡ −1 (mod n). As in the proof of assertion 3 of Lemma 5.3.3, we can choose
α = gcd(n, u + i).

— 118 —

5.4. A Variant without Primes

FERMAT4 ≥K ROOT(−1). Let n such that −1 is a square modulo n and square
free. By assertion 3 of Lemma 5.3.3, there exists an α = a + bi ∈ Z[i] such that
n = a2 + b2. We can find a and b by sending n to the oracle solving FERMAT4.
Finally, as for proving assertion 4 of Lemma 5.3.3, we can show that choosing u =
ab−1 mod n leads to a square root of −1 modulo n.

Remark 5.3.6. Note that both factorization problems are related to the problem
of recovering the private key of the MOVA scheme from the public key n. For an
RSA modulus n = pq, both FERMAT problems are related to the special instance
where the character is of the form χπσ. Hence, we know that solving ROOT(-3)
(resp. ROOT(-1)) is equivalent to retrieve the private key of the MOVA scheme
instantiated with such a character. Since the ROOT problem with no fixed challenge
(contrary to the above ROOT problems with the challenges -1 and -3 respectively)
is known to be equivalent (not in the sense of Karp) with the factorization problem,
this gives some argument towards the hardness of the MOVA problem.

Before concluding this section, we would like to mention that assertions 1 and 3
of Lemma 5.3.3 can alternatively be proved using lattice theory3. For instance, to
prove the assertion 3, we consider the lattice

L = {(x, y) ∈ Z2 | y ≡ ux (mod n)},

where u is a square root of −1 modulo n. Note that any pair (x, y) ∈ L satisfies
x2 + y2 = kn for an integer k. Using the Minkowski’s convex body theorem (see
Appendix A.3), we can show that a non zero pair of L must lie in a disc of radius less
than 2n. Thus, we deduce the existence of a pair (a, b) ∈ Z2 such that a2 + b2 = n.
A similar but more complicated proof also applies for the assertion 3 of Lemma 4.
These results also apply to some assertions of Proposition 5.3.5. Finally, we would
like to say that the above pair (x, y) can be efficiently found (see Nguy˜̂en [115])
using a lattice reduction since the lattice is of dimension 2.

5.4 A Variant without Primes

We develop in this section a MOVA variant instantiated with a particular character
which does not need the generation of prime numbers. Although it is very unlikely
that this variant will be implemented for some applications, we believe that it is
worth to present it. The main reason is that most public-key algorithms require the
generation of primes. This part should be mostly seen as an attempt of achieving
primeless cryptography and is restricted to the academic interest.

3The reader unfamiliar with lattices can have a look at Appendix A.3.

— 119 —

5. Characters on Z∗n and Applications to MOVA

First, we note that the (Jacobi-like) cubic and quartic residue characters χα are
defined for almost any kind of α. The only restriction is that 1−ω - α for d = 3 and
1 + i - α for d = 4. Hence, as long as α satisfies this property, χα is a well defined
character of order dividing d defined on Z∗N(α).

A signer can select a character for the MOVA scheme without picking prime
numbers in the following way.

1. Pick α ∈U Z[ω] (resp. Z[i]) of a given size uniformly at random.

2. Remove the highest power (1− ω)k (resp. (1 + i)k) dividing α.

3. Compute n = αᾱ.

4. The MOVA public key is n and the corresponding secret key α.

Remark 5.4.1. The signer can only apply Setup Variant 1 and 2 here since the
other ones require an expert group knowledge. In both variants, we need to generate
elements in Z∗n from a seed. For this, we need to compute some gcd to check whether
the generated elements lie in Z∗n. If the test is negative, we simply put the element
aside and test the next one produced by the pseudorandom generator GenK. When
n is almost picked at random the ratio of elements to be thrown away are not
negligible at all.

A natural question which immediately arises concerns the security of such a
variant. In particular, is it really hard to retrieve α from n? We have proved in
Proposition 5.3.5 that if n is square free and n 6≡ 2 (mod 4) for d = 3, this problem is
equivalent to find a square root of −3 (for d = 3) and −1 (for d = 4) modulo n. This
gives some argument towards a possible equivalence with the factorization problem.
So, we investigate below whether a random modulus n can be hard to factorize with
a reasonable size. We will show that an adversary has an non-negligible probability
to factorize n even when n is large, but that the expected required time of factoring
a random modulus is quite high.

5.4.1 Theoretical Results about Prime Factors

We summarize below some results related to the size of the prime factors of a
random integer. The presented material is taken from the article of Knuth and
Trabb Pardo [83].

Let n be a positive integer, we write its unique prime decomposition

n = n1n2n3 · · ·n`,

— 120 —

5.4. A Variant without Primes

where the ni’s are all (not necessarily different) prime satisfying n1 ≥ n2 ≥ . . . ≥ n`.
For x ∈ R and k, N ∈ N we define the function

Pk(x,N) := #{1 ≤ n ≤ N | nk ≤ Nx}

and the asymptotic probability

Fk(x) := lim
N→∞

Pk(x,N)

N
.

This corresponds approximately to the probability that nk ≤ nx for an integer n
picked uniformly at random. Evaluating F1 and F2 shows that the median value of
n1 is about n0.606 and that of n2 is about n0.211 i.e., F1(0.606) = F2(0.211) = 0.50.

We give in Table 5.1 a sample of some values of the functions F−1
1 and F−1

2 given
in [83]. Experimental tests done with Maple have confirmed the values for F2.

δ F−1
1 (δ) F−1

2 (δ)

0.01 0.26974 0.00558
0.02 0.29341 0.01110
0.10 0.37851 0.05308
0.50 0.60653 0.21172
0.90 0.90484 0.35899

Table 5.1: Distribution size of the two largest prime factors

Implications for a Random Modulus n. If we pick a modulus n uniformly at
random, we see that the probability that the second largest prime factor is small is
still too high. For example, for a n of size of 10′000 bits, the probability that the
second largest prime factor is smaller than 110 bits is about 2 %! This is quite bad
for the security of such a modulus n, since the elliptic curve method [96] (ECM)
allows to find prime factors of 110 bits in a couple of days on a single workstation.

5.4.2 Resistance of a Random Modulus

We study here in more details the problem of estimating the difficulty of factoring an
integer n picked uniformly at random. As a reference for the amount of computing
time, we will choose the among time that was required for factoring the challenge
RSA-155, an RSA modulus of 155 digits.

— 121 —

5. Characters on Z∗n and Applications to MOVA

GNFS versus ECM

We compare the complexity of ECM with the general number field sieve [95] (GNFS),
which is known to be the most efficient algorithm for factoring large RSA modulus.

A fundamental difference is that the complexity of GNFS depends on the size of
n, while that of ECM depends on the prime factor size of n we would like to extract.
Hence, we can say that the complexity for factoring n completely with ECM only
depends on the size of its second largest prime factor n2 plus a primality test. If we
consider a probabilistic primality test such as Miller-Rabin, this time is negligible
in our context.

We would like first to estimate the size of a prime factor ECM can find using the
same amount of time spent by the GNFS for factoring a 1024 bit RSA modulus. To
this end, we first use the two theoretical asymptotic complexity formulas for ECM
resp. GNFS

Compecm(p) = e(
√

2+o(1))(log p)1/2(log log p)1/2

Compgnfs(n) = e(1.923+o(1))(log n)1/3(log log n)2/3

,

where o(1) → 0 when p, n → ∞. Below we approximate these complexity func-
tions by replacing o(1) by 0. We determine two constants cecm, cgnfs such that
cecm · Compecm(p) resp. cgnfs · Compgnfs(n) gives an expression on the time spent in
MIPS by the ECM resp. GNFS method for retrieving the prime factor p resp. for
factoring n. The ECM constant has been determined using the fact that retrieving
a 40-digit prime factor of the tenth Fermat number required 240 MIPS years4 (see
Brent [27]). The second constant was determined using the amount of computation
(8400 MIPS years) needed for factoring RSA-155 (see Cavallar et al. [35]).

These two constants allowed us to deduce that computation complexity of the
factorization of RSA 1024 bits with GNFS corresponds to finding a prime factor of
size of 311 bits with ECM. In Table 5.2 we give some additional values in bits for
which the GNFS resp. ECM should take a similar amount of time.

Random versus RSA Modulus

We estimate here the time required by an adversary to factorize a random modulus
of 2048 bits. For this, we consider two kinds of adversary leading to completely
different conclusions. Details are explained below.

One-Shot Adversary. First, we imagine that the adversary simply gets one integer
n and performs computations until he finally factorizes it. In such a model we will say

4A MIPS year is the amount of computation processed during one year at a rate of one Million
Instructions Per Second.

— 122 —

5.4. A Variant without Primes

GNFS (modulus size) ECM (prime factor size)

512 160
768 238
1024 311
1536 447
2048 574

Table 5.2: GNFS versus ECM

that the difficulty of factoring can be measured by the expected time the adversary
needs to achieve this task. We can easily show that factoring a random n of 2048
bits is harder in average than a 1024 bit RSA modulus. From [83], we know that
F2(0.2) ≈ 0.463. Then, this means that for more than half of the cases factoring
n requires more time than cecm · Compecm(2410). Since this last value is more than
1000 times larger than the time required for factoring a 1024 bit RSA modulus with
GNFS, a random integer of 2048 bits is sufficiently strong in average.

Multi-Target Adversary. The average time is not always a good security measure.
Namely, most of the time we need to be sure that the adversary can factorize one
modulus n only with a very small probability. For example, we can think of a
scenario where the adversary has access to many moduli n and tries to break one of
them. So, if the above probability is not small, he will often find a weak modulus.

We suppose the adversary applies the following strategy. He decides of a time
threshold T which corresponds to the time he spends on a modulus n for attempting
to factorize it. If he does not succeed to factorize n after a time T , he begins again
with a new random target modulus n. He continues this process until he succeeds.
The average time in this scenario corresponds to about T/ Pr[t ≤ T] where t denotes
the time required to factor n. The adversary can find the optimal threshold Topt

i.e., the one which minimizes the average time. We assume that the adversary uses
ECM for factoring n. This is more adequate than the GNFS, since ECM has a
running time depending on the size of the second largest prime factor of n contrary
to GNFS. Using GNFS would always need the same amount of time and the search
of an optimal threshold T is meaningless.

The average time of such an adversary can be expressed as

cecm · Compecm(N2)

Prn[n2 ≤ N2]
,

where N2 is a threshold corresponding to the time T . If we set nx = N2 the above
expression becomes

cecm · Compecm(nx)

F2(x)
.

— 123 —

5. Characters on Z∗n and Applications to MOVA

Results for an n of 2048 bits are given in Table 5.3, where α = 1/x. Note that time
due to the primality test is omitted since it is negligible.

α av. time in MIPS

6 0.2343 · 1013

10 0.6842 · 107

14 0.9964 · 104

18 0.1670 · 103

20 0.3588 · 102

40 0.1251 · 10−1

Table 5.3: Average time to factorize a random modulus of 2048 bits.

The best strategy for an adversary is to choose a threshold as small as possible.
As illustrated in Table 5.3, this is due to the fact that the probability for n2 to be
smaller than n1/α does not decrease as fast as the complexity of ECM. In fact, the
probability for n2 to be very small is not negligible and the adversary can better
wait on a very weak n that can be factorized very rapidly.

To conclude, picking a modulus at random which should be resistant against
factorization cannot lead to a secure solution for a reasonable size of n in a multi-
target mode. As an illustration, we note that even 1% of the moduli of size of
20’000 bits have a second largest prime factor smaller than 112 bits by Table 5.1.
So, the original idea to replace an RSA-like modulus by a random integer and keep
a problem relying on the hardness of the factorization problem does not seem to
work.

5.5 On the MOVA Key Validation

Here, we come back to a classical RSA modulus n = pq, where the primes p and q
are chosen according to the character order d, i.e., such that d|p − 1 and d|q − 1.
Again, we particularly focus to the cases d = 2, 3, 4.

Key Validity

The aim of this part is to find some criteria on elements of Z∗n to H-generate Z∗n for
any group H of order d. For the sake of simplicity, we will say “d-generate Z∗n”. Due
to the structure of Z∗n, it will be sufficient to consider two elements so that Lkey = 2
for Setup Variants 3 and 4 of the MOVA scheme.

The following proposition shows how we can generally proceed to determine
whether two elements d-generate Z∗n.

— 124 —

5.5. On the MOVA Key Validation

Proposition 5.5.1. Let n and d be integers defined as above and u, v ∈ Z∗n. Assume
we are given two characters χp and χq of order d which are defined on Z∗p and Z∗q
respectively. Let consider the function ϕ : Z∗n → Zd ⊕ Zd defined by

ϕ(x) = (logχp
(x mod p), logχq

(x mod q)).

Then, u and v d-generate Z∗n if and only if ϕ(u) and ϕ(v) are both elements of order
d such that 〈ϕ(u)〉 ∩ 〈ϕ(v)〉 = {(0, 0)}.
Proof. We note that ϕ is a surjective group homomorphism since both characters
χp and χq are of order d and p 6= q. Namely, x mod q and x mod q can take
all values independently so that the pair (χp(x mod p), χq(x mod q)) generate all
possible values. By First Isomorphism Theorem, we have Z∗n/ ker(ϕ) ' Zd ⊕ Zd.
Moreover, ker(ϕ) = (Z∗n)d and we obtain the following commutative diagram

Z∗n Zd ⊕ Zd

Z∗n/(Z∗n)d

-ϕ

?

proj

¡
¡

¡
¡

¡µ

'

where proj denotes the canonical projection. By the assertion 7 of Lemma 4.1.3,
u and v d-generate Z∗n if and only if proj(u) and proj(v) generate Z∗n/(Z∗n)d. Due
to the above commutative diagram, this is equivalent to prove that ϕ(u) and ϕ(v)
generate Zd ⊕ Zd. It suffices to determine when two elements generate the group
Zd⊕Zd. Any two elements g, h ∈ Zd⊕Zd generate the subgroup 〈g, h〉 = 〈g〉+ 〈h〉.
Since the order of any element of Zd⊕Zd is at most equal to d, the subgroup 〈g, h〉
can contain d2 elements only if g and h are of order d. We conclude by saying that
〈g, h〉 = Zd ⊕ Zd, if g and h additionally generate some subgroups with a trivial
intersection.

In practice, the signer can pick seedK at random until this seed generates two
elements GenK(seedK)→ u, v ∈ Z∗n which d-generate Z∗n. To check the last property,
he can use the results of the above proposition. More precisely, an element (a, b) ∈
Zd ⊕ Zd has order d if and only if a ∈ Z∗d or b ∈ Z∗d. The second criterion can be
verified by testing whether ϕ(v) = jϕ(u) for one j ∈ Z∗d. In other words, we check
that ϕ(v) 6∈ 〈ϕ(u)〉. Since v is of order d it is sufficient to test only for j ∈ Z∗d instead
of any j ∈ Zd\{0}.
Example 8. Let n = pq be an RSA modulus with p ≡ q ≡ 1 (mod 4) and π, σ ∈ Z[i]
such that N(π) = p and N(σ) = q. The signer can decide whether u and v 4-generate
Z∗n by checking the following properties.

— 125 —

5. Characters on Z∗n and Applications to MOVA

1. At least one value among χπ(u), χσ(u) is equal to i or −i.

2. At least one value among χπ(v), χσ(v) is equal to i or −i.

3. (χπ(u), χσ(u)) 6= (χπ(v), χσ(v)) and (χπ(u), χσ(u)) 6= (χπ(v)3, χσ(v)3).

Very similar results are obtained with d = 2 and 3.

Expert Group Knowledge

As shown in Setup Variant 3 and 4 of the MOVA scheme, the signer needs to
perform the protocol MGGDproof and NIMGGDproof respectively. Both these
protocols require from the signer an expert group knowledge with respect to the
set {Xkey1, . . . , XkeyLkey}. As shown above, we can always reduce Lkey to 2 for
the characters we consider here. We have Xkey1 = u, Xkey2 = v, Xgroup = Z∗n
and Ygroup = Zd, where u and v are chosen according to Proposition 5.5.1. In our
context, an expert group knowledge of the signer means that for any x ∈ Z∗n he is
able to find an r ∈ Z∗n and some coefficients a, b ∈ Zd such that

x = rduavb mod n.

We show below how one can solve such an equation provided the knowledge of the
factorization of n. Namely, as shown in Section 5.2 all characters defined on Z∗n can
be found with p and q for d = 2, 3, 4. For the sake of simplicity, we consider χp and
χq defined on Z∗n. We first determine the unique coefficients a and b for a given x.
To this end, we compute logχp

(x) and logχq
(x) and solve the equations

logχp
(x) ≡ a logχp

(u) + b logχp
(v) (mod d)

logχq
(x) ≡ a logχq

(u) + b logχq
(v) (mod d)

with respect to a and b. By definition of u and v, we are ensured that a unique
solution exists. Namely, the two vectors (logχp

(u), logχq
(u)), (logχp

(v), logχq
(v)) form

a basis of Zd ⊕ Zd since

Zd ⊕ Zd ' 〈ϕ(u)〉 ⊕ 〈ϕ(v)〉.
It remains to find a dth root of x/(uavb) mod n. This can be achieved by finding
the dth root of this element modulo p and q. We retrieve r by applying Chinese
Remainder Theorem. For d = 2, we can use the algorithm of Tonelli and Shanks
(see [42]) and for d = 4, we apply this twice. Extracting cube roots can also be done
efficiently modulo p and q by using an algorithm similar to the Shanks and Tonelli
algorithm. More details about the computation of a cube root modulo a prime are
given in Williams and Zarnke [147].

— 126 —

5.5. On the MOVA Key Validation

After having shown that the factorization of n allows to have an expert group
knowledge of Z∗n, we prove the converse statement below. Assume we have an oracle
such that for any query x ∈ Z∗n, we receive some values r ∈ Z∗n, a, b ∈ Zd satisfying
x = rduavb mod n. The main technique will consist in picking some r1 ∈U Z∗n,
a, b ∈U Zd uniformly at random and sends x = rd

1u
avb mod n to the oracle and

attempting to factorize n using the received representation x = rd
2u

avb mod n. From
this, we get two dth root of the same value, namely

rd
1 ≡ rd

2 (mod n).

It is well known that if r1 6≡ ±r2 (mod n) and d = 2, we retrieve a non trivial
factor of n with probability 1/2 by computing gcd(r1 − r2, n). This extends easily
to d = 4, since 4th root leads to square root in a straightforward way. For d = 3,
we proceed in the same way and gcd(r1 − r2, n) leads a non trivial factor of n with
a probability of 4/9. This probability corresponds to the cases where both roots are
equal modulo p but not modulo q and vice versa. So, if we repeat the above method
until a success occurs, we can factorize n. The expected time of success is quite low
and anyway polynomial in log(n).

— 127 —

Chapter 6
Additional Homomorphisms and
Algorithmic Issues

Homomorphism evaluations play a central role in the different components of MOVA
and in particular in the signature generation algorithm. Due to the generic nature
of MOVA undeniable signature scheme, it is required to specify the choice of group
homomorphisms in order to fully determine the different parameters and algorith-
mic aspects. The main task of this chapter is mostly to contribute to the latter
in clarifying the impact of the homomorphism’s choice on the efficiency of MOVA.
A particular attention will be addressed to the quartic residue symbol for which
practical implementations are not widespread. Furthermore, we focus on a homo-
morphism shortly introduced in Chapter 4 which consists in sending elements in a
hidden (relatively small) subgroup followed by a discrete logarithm computation.

We first present the different homomorphisms considered for the efficiency com-
parisons giving a more detailed treatment to the homomorphism based on the dis-
crete logarithm. The next section is dedicated to provide algorithms for the compu-
tation of the quartic residue symbol. In Section 6.3, we briefly explain the different
variants for computing the discrete logarithm based homomorphism. Then, we fo-
cus on the implementation of this one as well as the quartic residue symbol. We
finally conclude by comparing the different homomorphisms by considering signature
generation of a 20-bit MOVA signature.

6.1 Homomorphisms

In this section, we describe some instances of the group homomorphism Hom which
is the core of the MOVA scheme. As considered instantiations are the characters
on Z∗n, the RSA encryption homomorphism [66, 131], and the discrete logarithm

6. Additional Homomorphisms and Algorithmic Issues

in a hidden subgroup based on Example 7 of Subsection 4.1.2. In the subsequent
sections, our focus will be directed towards algorithmic aspects of characters of order
4 and the homomorphism based on the discrete logarithm.

6.1.1 Characters on Z∗n
As instantiations based on characters were thoroughly described in Chapter 5, we
will not dwell again on this. We only consider characters of order 4 and recall how
they can be characterized. To this goal, we consider two rational primes p, q such
that p ≡ q ≡ 1 (mod 4). Applying the theory presented in Chapter 5, one can
efficiently compute some π, σ ∈ Z[i] such that ππ̄ = p and σσ̄ = q. Below, we will
focus on the quartic residue symbols χπ and χπσ, which can be both trivially defined
on Z∗n, where n = pq. Using the latter was notably motivated in some context where
two levels of secret are desired (see Subsection 5.2.4).

From the theory of characters (see Section 5.1), we can show that (χπσ(a))2 =
(a/n)2 for any a ∈ Z. Therefore, without the knowledge of the factorization of n
we can easily deduce one bit of χπσ(a). In practice, we will compress this quartic
residue symbol to one bit sending 1, i to the bit 0 and −1,−i to the bit 1. To decom-
press, it suffices to compute the Jacobi symbol to retrieve the right quartic residue
symbol. Hence, with this quartic residue symbol we have to perform two times more
evaluations than with χπ for the same level of security against an existential forgery.
This shows that the signature generation will be anyway less efficient for χπσ than
for χπ.

6.1.2 RSA

Following the long tradition of the RSA based cryptography, an undeniable signature
scheme based on RSA [131] was proposed in 1997 by Gennaro et al. [66]. This scheme
can be seen as a special case of the MOVA scheme when the homomorphism is the
RSA encryption function defined on a modulus of safe primes. So, the signature
is generated as for the regular RSA signature scheme. In this chapter, we will
only make use of it as a performance benchmark. Namely, we are focusing on
homomorphisms which make practical the scalability of the signature size, since
this property is the main advantage of MOVA over the other ones.

6.1.3 Discrete Logarithm in a Hidden Subgroup

Another homomorphism suitable for the MOVA scheme is based on the discrete
logarithm in a hidden subgroup of Z∗n.

Let n be such that n = pq with p = rd + 1, q, d prime, gcd(q − 1, d) = 1,
gcd(r, d) = 1 and g generating a subgroup of Z∗p. We obtain g by choosing a random

— 130 —

6.1. Homomorphisms

element h ∈ Z∗n until h satisfies hr mod p 6= 1 and we set g = hr mod p. Like this we
find a homomorphism by “sending” the input in a hidden cyclic subgroup of order
d and then computing its discrete logarithm with respect to the generator g,

ϕ : Z∗n −→ Zd

x 7−→ logg(x
r mod p).

Below, we develop additional properties such as d-generation of Z∗n and expert group
knowledge of this group. Namely, these properties need to be considered in some
protocols such as Setup Variant 3 and 4 of the MOVA scheme. By the assertion 7
of Lemma 4.1.3, we need to examine the structure of Z∗n/(Z∗n)d. Since the kernel of
ϕ is (Z∗n)d, the quotient group Z∗n/(Z∗n)d is isomorphic to Zd by First Isomorphism
Theorem and we obtain the following commutative diagram

Z∗n Zd

Z∗n/(Z∗n)d

-ϕ

?

proj

¡
¡

¡¡µ

'

where proj denotes the canonical projection. Hence, an element u ∈ Z∗n d-generates
Z∗n if and only if ϕ(u) generates Zd. Thus, it suffices to check whether ϕ(u) 6= 0 or
equivalently ur mod p 6= 1 to decide whether an element u d-generates Z∗n. Let x be
a given element of Z∗n. Expert group knowledge with u in this setting consists in
finding some elements y ∈ Z∗n and a ∈ Zd such that

x = ydua.

Note that a is uniquely defined by x and can be easily deduced from aϕ(u) = ϕ(x).
An element y satisfying the above equation can be also computed by extracting a dth
root of x/ua mod n. We perform this operation by computing a dth root in Z∗p and
Z∗q and applying Chinese Remainder Theorem. Since gcd(d, q−1) = 1, a dth root in
Z∗q can be easily computed by raising the element to the power d−1 mod q − 1. In Z∗p,
a more sophisticated technique needs to be used since d|p− 1. To this, we refer to a
generalization of the Shank’s algorithm [99] which allows to compute a dth root in Z∗p
using O(log2(p) log log(p)) multiplications modulo p provided that d = O(log2(p)).
To facilitate such a computation, we propose alternatively to choose p in such a way
that r ≡ −1 (mod d). When this is the case, a dth root of an element z ∈ Z∗p (which

is a dth power) can be efficiently found by computing z
r+1

d mod p.

— 131 —

6. Additional Homomorphisms and Algorithmic Issues

6.2 Quartic Residue Symbol

The results of this section were achieved in a semester project of Yvonne Anne
Oswald [122] under the supervision of Serge Vaudenay and myself.

6.2.1 Basic Algorithm

Description

To compute the quartic residue symbol χβ(α) directly, one has to know the factor-
ization of β into primes over Z[i] and the computation contains an exponentiation.
To avoid this factorization as well as the costly exponentiation we apply the prop-
erties of the quartic residue symbol given in Theorem 5.1.16 iteratively. Note that
this is similar as for the ordinary method to compute the Jacobi symbol. This basic
method is described in Algorithm 6.1.

First we reduce α to an element α̂ equivalent to α modulo β which satisfies
N(α̂) < N(β). From now on, such a reduction of an element α modulo β will be
denoted Redβ(α). Note that the obtained α̂ ← Redβ(α) is not necessarily unique.
Then, we find the unique representation α̂ = ij · (1 + i)k · α′ with α′ primary and
employ the multiplicativity property and the complementary laws of the quartic
residue symbol. Next, we interchange α and β according to the law of reciprocity
and start again. Therefore, the size of both α and β decrease progressively. We stop
the iteration process when α or β is a unit.

Computation of Related Subfunctions

For this algorithm we have to implement a few functions for calculating basic oper-
ations in the ring of Gaussian integers (let α, β ∈ Z[i]):

• Multiplication: α · β
• Norm: N(α)

• Division by (1 + i)r

• Primarization: transforms α into its primary associate if possible

• Modular reduction: Redβ(α)

The multiplication and the norm are trivially implemented by performing integer
multiplications between the appropriate integer components.

The division of α by (1+ i)r can be done by first raising (1+ i) to the power of r
and then dividing α by the result. We propose a way of achieving the same by only

— 132 —

6.2. Quartic Residue Symbol

Algorithm 6.1. Basic algorithm for quartic residue symbol

Require: α, β ∈ Z[i] \ {0}, gcd(α, β) ∼ 1 and (1 + i) - β
Ensure: c = χβ(α) (c = 0⇔ χβ(α) is not defined)
1: α← Redβ(α)
2: if α = 0 then c = 0 end if
3: let primary α1, β1 ∈ Z[i] be defined by

α = (i)i1 · (1 + i)j1 · α1 and
β = (i)i2 · β1

4: let m,n ∈ Z be defined by β1 = m + ni
5: t← m2+n2−1

4
i1 + m−n−n2−1

4
j1 mod 4

6: replace α with β1, β with α1

7: t← t + (N(α)−1)(N(β)−1)
8

mod 4
8: while N(α) > 1 do
9: α← Redβ(α)

10: let primary α1 be defined by α = (i)i1 · (1 + i)j1 · α1

11: let m,n ∈ Z be defined by β = m + ni
12: t← t + m2+n2−1

4
i1 + m−n−n2−1

4
j1 mod 4

13: replace α with β, β with α1

14: t← t + (N(α)−1)(N(β)−1)
8

mod 4
15: end while
16: if N(α) 6= 1 then c← 0 else c← it end if

using shift operations, additions, and interchanging the imaginary and real part if
necessary. Let α = a + bi, the following equations

α

(1 + i)
=

a + b

2
+

b− a

2
i,

and
α

(1 + i)r
=

i3k
(

a
2k + b

2k i
)

(1 + i)`
, r = 2k + `

demonstrate our procedure. If r = 2k, k ∈ N we shift the real and the imaginary
parts of α by k to the right and multiply them by −1 and/or interchange them
depending on the value of 3k. If r is odd, there is an additional subtraction and
addition to perform.

The primarization function we used consists of a few congruency tests and it
also determines the number of times we have to multiply α by i to get the primary
associate of α.

— 133 —

6. Additional Homomorphisms and Algorithmic Issues

The computation of Redβ(α) is first done by approximating α/β = u + vi ∈ R[i]
with some integers u′ and v′ satisfying

|u− u′| ≤ 1

2
and |v − v′| ≤ 1

2
,

and then by computing the rest α − β(u′ + v′i). More details on this are given in
Lefèvre [93].

To find the representation of α we proceed as follows. First calculate the norm
of α, N(α). Then find j maximal such that 2j | N(α). Divide α by (1 + i)j and
transform the result into its primary associate.

In the implementation of the algorithm we need to ensure (1 + i) - β and
gcd(α, β) ∼ 1. The first requirement is taken care of by applying the primariza-
tion function on β. If we cannot find a primary associate, β is divisible by (1 + i)
and we terminate. For the second condition we check in every iteration whether
Redβ(α)→ 0. This would imply gcd(α, β) 6∼ 1 and we terminate.

6.2.2 Algorithm of Damg̊ard and Frandsen

Description

The most expensive operation used in the algorithm described above is Redβ(α).
Damg̊ard and Frandsen present in [48] an efficient algorithm for computing the
cubic residue symbol in the ring of Eisenstein integers. Their algorithm can be
readily transformed into an algorithm for the quartic residue symbol in the ring of
Gaussian integers as shown in [48]. This algorithm is depicted in Algorithm 6.2.

There are three main differences to the basic algorithm. Instead of using Redβ(α)
to reduce α, they suggest using α − β. This takes much less time but increases
the number of iterations needed. Furthermore they only interchange α and β, if
N(α) < N(β). It is not necessary to calculate N(·) exactly for this purpose, an
approximation Ñ(·) suffices. They demonstrate how one can compute an approxi-
mate norm Ñ(α) in linear time. Instead of adding up the squares of the real and
the imaginary part of α, one replaces all but the 8 most significant bits of the real
and the imaginary part of α with zeroes and computes the norm of the resulting
Gaussian number. Their algorithm takes O(log2 N(αβ)) time to compute χβ(α).

6.2.3 Other Algorithms

In addition to the above, we studied papers concerning algorithms for the quartic
residue symbol by Weilert. In [145], he presents a fast gcd algorithm for Gaussian
integers. Based on this gcd algorithm and using some properties of the Hilbert sym-
bol he demonstrates in [146] how to construct an algorithm for the quartic residue

— 134 —

6.2. Quartic Residue Symbol

Algorithm 6.2. Damg̊ard and Frandsen’s algorithm

Require: α, β ∈ Z[i] \ {0}, gcd(α, β) ∼ 1 and (1 + i) - β
Ensure: c = χβ(α) (c = 0⇔ χβ(α) is not defined)
1: let primary α1, β1 ∈ Z[i] be defined by

α = (i)i1 · (1 + i)j1 · α1 and
β = (i)i2 · β1

2: let m,n ∈ Z be defined by β1 = m + ni
3: t← m2+n2−1

4
i1 + m−n−n2−1

4
j1 mod 4

4: replace α with α1, β with β1

5: if Ñ(α) < Ñ(β) then
6: interchange α and β and adjust t

t← t + (N(α)−1)(N(β)−1)
8

mod 4
7: end if
8: while α 6= β do
9: let primary α1 be defined by α− β = (i)i1 · (1 + i)j1 · α1

10: let m,n ∈ Z be defined by β = m + ni
11: t← t + m2+n2−1

4
i1 + m−n−n2−1

4
j1 mod 4

12: replace α with α1

13: if Ñ(α) < Ñ(β) then
14: interchange α and β and adjust t

t← t + (N(α)−1)(N(β)−1)
8

mod 4
15: end if
16: end while
17: if α 6= 1 then c← 0 else c← it end if

symbol. This algorithm involves calculating an Euclidean descent and storing some
intermediate results for later use. This algorithm presents a very fast asymptotic
complexity which is even better than that of Damg̊ard and Frandsen.

However, as mentioned by Damg̊ard et al. in [48], the fastest algorithms for
practical inputs in the case of the Jacobi symbol are based on binary gcd algo-
rithms [102]. Weilert proposed a binary gcd algorithm for Gaussian integers in [144]
as well, but did not adapt it to the computation of the quartic residue symbol. Algo-
rithm 6.2 follows this approach and Damg̊ard and Frandsen argued in [48] that this
is likely to provide a more efficient algorithm than the asymptotically fast variant
of Weilert [146] in practice. Therefore, we have chosen to implement Algorithm 6.2
which takes this binary approach since we need a fast algorithm for practical inputs
rather than the best asymptotic complexity.

— 135 —

6. Additional Homomorphisms and Algorithmic Issues

6.3 Discrete Logarithm in a Hidden Subgroup

One suitable homomorphism for the MOVA scheme is the one mentioned in Subsec-
tion 6.1.3. It consists of a modular exponentiation followed by a discrete logarithm
computation. The modular exponentiation can be implemented by the classical
methods such as the square-and-multiply method. For the discrete logarithm com-
putation we consider three variants which are the use of a precomputed table of
all discrete logarithms, the Shanks baby-step giant-step (BSGS) algorithm and Pol-
lard’s rho method. The choice of the algorithm will strongly depend on the amount
of memory the signer has at disposal, namely the Pollard rho method requires almost
no memory while the BSGS method is a time-memory tradeoff. Below we discuss
the method of precomputed table and we refer to [100] for a description of the two
other methods.

Given p prime, g a generator of a cyclic group G, subgroup of Z∗p, and d = |G|,
we construct a table with entries (gj, j) for 0 ≤ j ≤ d. Building this table is a
time and memory consuming task, but once the table exists, finding the discrete
logarithm consists of a simple look up operation.

There are several ways of constructing such a table. One can use a two dimen-
sional array and sorting it by the first component. Finding the discrete logarithm
is then reduced to a binary search. Alternatively, one can use conventional hashing
on the first component to store the entries in a hash table, in which case placing an
entry and searching for an entry in the table takes constant time. Another advan-
tage is the fact, that we do not need space for gi. Especially when pÀ d, this can
save an enormous amount of memory. The only difficulties are finding a suitable
hash function and dealing with collisions without losing too much time.

Time complexity of the construction of the table is O(d) multiplications (plus
O(d log d) comparisons to sort). Space complexity is O(d(log d + log p)) for the
sorted table, resp. O(d log d) for the hash table. The running time to find a discrete
logarithm for the sorted table is O(log d), for the hash table O(1).

6.4 Implementation

The implementation of all algorithms has been written in C using the GNU Multiple
Precision Arithmetic Library (GMP) [68] and was done by Yvonne Anne Oswald
during her semester project [122]. This library provides highly optimized arithmetic
functions on large numbers. Most of the basic computations in Z have been per-
formed using GMP such as integer multiplication or the modular exponentiation.
For all implemented homomorphisms, we focused on the case where the modulus n
is of size of 1024 bits.

— 136 —

6.4. Implementation

6.4.1 Quartic Residue Symbol

Our principal optimization effort focused on the two algorithms computing the quar-
tic residue symbol. In particular, we minimized the number of function calls, used
some of the more sophisticated GMP functions, reduced the number of mpz t (C
data type for a multiple precision integer) variables whenever possible and applied
general C optimization techniques such as described in [64,92]. In addition, we used
profiling and tried out different compiler optimization levels.

The basic algorithm has been implemented using the above remarks as well as the
methods for computing the subfunctions which are explained in Subsection 6.2.1. We
proceeded in the same way for the algorithm of Damg̊ard and Frandsen. Addition-
ally, we tested whether the use of an approximative norm allows to obtain effective
improvements. We implemented both the standard norm and the norm Damg̊ard
and Frandsen suggest. The standard norm consists of only two GMP functions: one
multiplication and one combined addition/multiplication whereas the approximate
norm involves one bit scan to determine the size of the real part, one shift operation
to extract the 8 most significant bits, one multiplication for the squaring of these 8
bits and another shift operation to put the result back to its correct position. We
apply the same procedure on the imaginary part and we add the two approximate
squarings up. So, we need additional operations to reduce the size of the numbers
we have to multiply.

As GMP is a highly optimized library, computing the standard norm takes little
time and the additional operations of the approximate norm only amortise if the
real and the imaginary part are larger than 2048 bits. This and the fact that the
norm of α and β decreases with each iteration convinced us to use the standard
norm instead.

6.4.2 Discrete Logarithm

Here, we would like to present how we manage the computation of the discrete
logarithm in the case of the precomputed table.

In this suggested instantiation of the MOVA scheme, p is typically of 512 bits and
d is a 20-bit prime. Creating a table with d entries of size 532 bits is not convenient
(or even impossible sometimes) on a usual desktop computer. Furthermore, as shown
in Subsection 6.3, this is not the most efficient variant. Therefore, we decided to use
a hash table (key 512 bits, data 20 bits, 220 entries). We found some existing hash
table data structures written in C, but they do not fulfil our requirements. They
are either too slow, support C types only, do not allow tables that large and/or they
store the key as well.

To avoid problems, we did not adapt any of the existing data structures, but
implemented a hash table ourselves providing enough storage and a collision han-

— 137 —

6. Additional Homomorphisms and Algorithmic Issues

dling mechanism suitable for our needs. Our solution is a hash table consisting of an
array of unsigned integers. This array is of maximal length 224 to reduce collisions.

An unsigned integer is 32 bits long, so it was possible to store the data for the
logarithm as well as using one of the higher order bits as a flag for collisions. Because
the key is large and we wanted to avoid any unnecessary computation, we chose to
use the 24 least significant bits of the key as the index into the hash table, in case
of collision the next 24 bits, etc. By selecting 24 bits instead of the possible 20 bits,
we minimize the occurrence of collisions. Tests have shown that most collisions are
resolved by choosing the next 24 bits. We tried out other hash functions, but we
did not achieve a gain of speed. This way, the size of the table is 64 MB.

To find the correct discrete logarithm for y ∈ G, one has to check if the collision
flag at the corresponding array field is set, to decide if one can return the logarithm
stored in the field or if one has to continue with the next field.

The implementation of the BSGS was done in a similar way. As the table contains
much less entries, collisions hardly ever occur. The implementation of the Pollard
rho method did not require any special treatment.

6.5 Results

In this section we present the results of the timing measurements we conducted
to determine how well the different algorithms perform. In order to measure the
running time precisely, we used functionalities offered by frequence cpu.h by Victor
Stinner [141]. The tests have been done on an Intel(R)4 1.4 GHz Desktop Computer
with 256 MB RAM. Our results are average values produced by test series of 1000
tests.

6.5.1 Quartic Residue Symbol

We have considered the quartic residue symbol χβ(α) where α is a Gaussian integer
with real and imaginary part of 1024 bits and β = πσ a product of two primes
and of size of 512 bits in each component. In such a situation, we have to consider
a variant of the Damg̊ard and Frandsen algorithm, we call the mixed algorithm.
Namely, since α is much bigger than β it is more efficient in this case to compute
first α̂← Redβ(α) and apply the Damg̊ard and Frandsen algorithm on χβ(α̂). Timed
results and number of iterations are given in Table 6.1. The mixed algorithm is then
the most judicious choice for fast implementations. The same phenomenon occurs
for the case β = π as well.

— 138 —

6.5. Results

time in ms iterations
Basic algorithm 32.12 248.81
Damg̊ard’s algorithm 50.63 766.12
Mixed algorithm 24.65 511.92

Table 6.1: Quartic Residue Symbol with β = πσ

6.5.2 Signature Generation

Here, we finally compare the time required for generating a MOVA signature with
the different homomorphisms. We consider a signature size of 20 bits (except for
RSA). We omit the time required by the generation of the values Xsigi’s. Hence,
we just have to compare the time required for computing 20 Jacobi symbols (·/p)2

(or (·/q)2), 20 quartic residue symbols with β = πσ, 10 quartic residue symbols
with β = π, 1 homomorphism based on the discrete logarithm in a hidden subgroup
and 1 RSA homomorphism. We recall that for all these homomorphisms, we take a
modulus n of size of 1024 bits. Results are given in Table 6.2.

Homomorphism time in ms
Quartic Residue Symbol (β = πσ) 493.01
Quartic Residue Symbol (β = π) 90.32
Jacobi Symbol (ordinary algorithm) 25.22
Jacobi Symbol (mpz jacobi) 2.32
Discrete Logarithm (Precomputed Table) 9.66
Discrete Logarithm (BSGS) 19.47
Discrete Logarithm (Pollard’s rho) 74.93
RSA 33.87

Table 6.2: Results Comparison Signature Schemes

We have implemented the Jacobi symbol using a similar algorithm as Algo-
rithm 6.1 and the basic GMP subroutines in order to have a fair comparison with
our implementation of the quartic residue symbol. We note that the highly opti-
mized GMP implementation of the Jacobi symbol mpz jacobi provides the fastest
signature generation and that the quartic residue symbol χπ is about 4 times slower
than our implementation of the Jacobi symbol. This is mainly due to the fact that
all operations are performed in Z[i] instead of Z. We remark that the variant χπσ is
much slower than for χπ since we have to perform two times more quartic residue
computations and that β is two times greater. The variants of the discrete logarithm
offer a very competitive homomorphism. In particular, except for the variant using
the Pollard rho method this homomorphism is more efficient than an RSA ordinary

— 139 —

6. Additional Homomorphisms and Algorithmic Issues

signature. In particular, the variant with the precomputed table is three times faster
than an RSA signature.

Note that these results directly apply to the confirmation protocol since the
number of homomorphism evaluations the prover needs to perform is proportional
(except for RSA) to that required for the signature generation. For the denial,
homomorphism computations represent the principal computational task for the
prover as well. However, the smallest prime number pd of d here influences the
number of homomorphism computations in a quadratic way, since this one also
depends on the signature size. Since denial protocol is rarely performed in classical
applications, optimizations should not focus on this protocol.

— 140 —

Chapter 7
Applications of the MOVA Scheme

Since the invention of the undeniable signatures, several applications of these prim-
itives were mentioned or developed in the literature. In their seminal paper in 1989,
Chaum and van Antwerpen [40] motivated their introduction mainly for privacy
reasons, arguing that undeniable signatures are much more suitable for signing con-
fidential contracts or sensitive and private information. Licensing of sensitive soft-
ware is an often cited possible application which was first proposed by Chaum [36]
in 1990. More precisely, a software company signs sensitive software using an un-
deniable signature scheme and restricts the verification of the software authenticity
to the customers who paid for a license. In addition to these applications, undeni-
able signatures were used in the design of digital cash protocols as illustrated in the
following articles [25, 39,128]. Finally, we point out that applications of undeniable
signatures were also investigated in the context of electronic auctions [134].

The aim of this chapter is to provide an analysis of some potential applications
of the MOVA undeniable signature scheme. Here, we focus on the specific proper-
ties provided by this scheme in order to find dedicated applications. In particular,
the size of the MOVA signatures allows to consider additional applications taking
advantage of very short signatures.

We emphasize that it is sometimes a matter of taste to decide whether one
application needs a given property or not. For instance, while some people consider
that we can trust some authorities, others would never accept such a fact. This can
lead to a decision whether the need of non-repudiation (thus signatures) is necessary
or not.

In the next section, we give a high-level approach of different considered appli-
cations of MOVA by providing the context and a short analysis of the advantages
offered by MOVA. The subsequent section is fully dedicated to an SMS-based lottery
application for which we develop a more detailed analysis.

7. Applications of the MOVA Scheme

7.1 Potential MOVA Applications

7.1.1 General Properties of MOVA

To begin with, we recall the principal properties of the MOVA scheme:

• the non-repudiation

• the invisibility of the signatures

• the size of MOVA signatures which is fully scalable depending on the security
level

• the ability to verify huge sets of signatures with constant communication

Though the aforementioned properties are not specific to the MOVA scheme
when treated separately, we are not aware of the existence of another cryptographic
primitive which fullfils all of them simultaneously. In particular, the non-repudiation
and the size of the signatures are very specific to our scheme. We believe that both
of these properties are prone to lead to some interesting applications. Surprisingly,
on-line verification which was the main goal of undeniable signatures is not directly
used in these properties. It is only required in an indirect way to achieve very short
signatures. Focusing on the MOVA scheme, we will not necessarily try to develop
applications taking advantage of the invisibility of undeniable signatures. What
is more, it is intended to find an application which strictly requires properties of
the MOVA scheme and which cannot be achieved by other methods (even standard
undeniable signatures). We compare in Table 7.1 the properties achieved by MOVA
with different cryptographic primitives which are MAC algorithms, classical digital
signatures (universally verifiable), and undeniable signatures developed at a prior
time than MOVA.

Primitives Non-Repu. Short Size Invisibility Batch Ver.
MOVA X X X X

Pre. Undeniable Signatures X X X
Classical Signatures X

MAC X X

Table 7.1: Comparison with other cryptographic primitives

In this table, the criterion “short size” refers to a very short string, i.e., poten-
tially less than 80 bits. Therefore, even short classical signatures of 160 bits due to
Boneh, Lynn, and Shacham [22] or those from Courtois, Finiasz, and Sendrier [44,59]
achieving 120 bits with reasonable parameters, are not classified as short.

In what follows, we briefly analyze some potential applications for which MOVA
signatures can offer specific advantages over other techniques.

— 142 —

7.1. Potential MOVA Applications

7.1.2 Banknote Protection

Context. We consider a type of banknotes containing a MOVA signature on them.
Its role consists in providing some evidence of the authenticity of the banknote. The
signature is obtained by signing an identifier (string of characters) associated to the
banknote with respect to the secret key of the banknote supplier (typically a central
bank). This identifier should preferably have the property of being not reproducible
such that a counterfeiter cannot create such a value on another banknote. For
instance, we can imagine that this identifier is directly obtained by some unique
physical properties of the banknote. If this property cannot be achieved, we cannot
thwart copies of genuine banknotes. However, the counterfeiter should be unable
to create genuine banknotes with a new identifier, which can facilitate the central
bank to track counterfeit banknotes.

Involved Entities. The different entities involved in the use of a banknote are
composed of the central bank, a vendor and a customer. The central bank produces
the banknotes and add a MOVA signature of the identifier associated to the banknote
on this one. Once the banknote is on the market, a customer can use it to pay a
vendor. In order to accept the banknote as genuine, the vendor has to interact online
with the central bank. If this one confirms the validity of the signature, the vendor
then cashes the banknote.

Trusted Central Bank. The central bank is an authority and may be considered
as trustful when it confirms the validity of a banknote. Under this quite plausible
assumption, we can avoid in practice the use of a confirmation protocol for any
banknote verification between the central bank and the vendor. It is sufficient that
the central bank checks the validity of the signature by itself and simply sends an
acknowledgment of this fact to the vendor. The connection between the vendor
and the central bank must be secure. In particular, the central bank has to be
authenticated by the vendor.

Non-Repudiation. Even if one can consider that the central bank is trusted when
this one confirms the validity of a signature, it is desirable for a customer that the
central bank is able to formally prove the invalidity of a counterfeit banknote. Hence,
if a customer complains about this fact, a legal authority should be able to require
a formal proof of the invalidity of a signature related to the alleged counterfeit
banknote.

Signature Size. Below, we present three variants related to the verification of
the signatures and analyze the respective signature size for a security level of 2−30.

— 143 —

7. Applications of the MOVA Scheme

More precisely, we consider an existential forgery attack and assume that Xgroup is
adjusted such that any attacker succeeds with a probability SuccLsig-S-GHI ≈ d−Lsig.
As in Subsection 4.4.4, we can deduce that the size s in bits of the signature should
satisfy

s ≈ 32 + log2(qV) + log2(qS),

in order to guarantee a security of 2−30.

• Server Without Protection. If the verification server of the central bank
gives a totally free access to anybody and does not limit the verification with
respect to a given banknote (random value), we can imagine that qV ≈ 240

and qS = 0, which leads to a signature size of about 72 bits.

• Server with Limited Access. Here, we assume that only a number of
limited entities (vendors) have access to the verification server. The commu-
nication is secure and the verifier is authenticated by the server. The server
does not allow the verifier to verify too many invalid signatures. For instance,
after 3 invalid signatures on the same value the server could stop the verifica-
tion process. This scenario allows to avoid massive queries in order to forge a
signature. Therefore, we can imagine signatures of size of about 40 bits.

• Server with Paying Verification. We consider a scenario where each sig-
nature verification costs a little amount of money for the verifier, e.g., 1 cent.
This restriction will also strongly limit the counterfeiter to make many veri-
fications. We can reasonably assume that, he will not pay more than 10 US
dollars to have a probability of 2−30 of forging a signature. Namely, it would
cost to him 10 billion dollars in average to forge one signature. Therefore, we
can consider qV ≈ 210 which leads again to signatures of about 40 bits. This
can be adapted depending on the size of the value of the banknote as well.

Alternatives to MOVA.

• Symmetric-key Cryptography. Using techniques of the symmetric cryp-
tography would allow the central bank using a secret key to generate a secret
string from the identifier associated to a banknote e.g., by using a MAC algo-
rithm. This would possibly lead to a very short string as well. This technique
would also require an online verification with the central bank. However, there
is no way for the central bank to formally prove the invalidity of a signature.
Hence, even a legal authority could not decide whether the banknote is a
counterfeit one as there is no alternative to completely trust the central bank
without disclosing the secret key.

— 144 —

7.1. Potential MOVA Applications

• Classical Digital Signatures. Replacing a MOVA signature by a classical
one would have the following consequences. The verification of the banknote
would be universal, i.e., anybody would be able to check the validity of the
signature without any online connection with the central bank. So, a customer
is directly convinced on the validity/invalidity of the signature and does not
need any interaction with the central bank to get a proof of this statement. The
main disadvantage is that the size of the signatures would be clearly longer.
This may be inadequate if one wants that humans are able to manually handle
the signatures.

Batch Verification. This property can be very useful when the vendor would like
to check the validity of several banknotes using one communication session with the
server of the central bank.

To summarize, this application mainly requires the non-repudiation property
and very short signatures. Looking at Table 7.1 shows that only MOVA can satisfy
these requirements.

7.1.3 Sensitive Software Protection

We revisit here the application on the licensing of sensitive software put forth by
Chaum [36] and show how additional advantages can be exploited with MOVA,
notably the signature size.

Context. A software company signs his software products with MOVA signatures.
The MOVA signature is then provided with the software or in a separate way (e-
mail, by phone, ...). Then, the client has access to an online verification service of
the signature in order to be convinced that the software is genuine and does not
contain any backdoor, viruses, etc. This service is only restricted to the customers
who paid for a license. For this verification step, the client has to be authentified so
that the company can check that this one paid for a license.

This scenario is applicable only when we consider software whose authenticity
for the client is crucial (such as software used for sensitive data) since this appli-
cation does not prevent illegal copies. What is valuable here is the authenticity of
the product, i.e., the right to perform a confirmation protocol with the software
company.

Personalized Signatures. To make more difficult to fraud, the software company
could release different signatures for each customer. The company could for example
add a serial number and sign a message composed of the software and the serial

— 145 —

7. Applications of the MOVA Scheme

number. For some practical reasons, when the software is sold in “hard” (CD, ...),
the serial number and the signature are added separately in the software box e.g.,
on a sticker. In this way, it is easier for the company to produce exactly the same
CD and add the personalized part of the product separately (as it is already the
case for some software licenses).

Advantages of MOVA. The major advantage of using undeniable signatures
comes from the online verification of the software authenticity. Namely, a customer
should not be able to transfer a proof of the validity of the MOVA signature, other-
wise the authenticity of the product can be verified without the software company,
i.e., without paying any license. The short size of MOVA signatures can be very
useful when the signature should be entered by hand before the verification. In
particular, this is the case when the signatures are personalized.

Alternatives. Classical digital signatures cannot be used here, since one can easily
copy the software and the signature allowing a third party to verify the authenticity
of the product by himself. MAC algorithms do not offer a convenient alternative in
this application. First, the secret key cannot be given to the customer, otherwise he
could convince anybody else by releasing this one. If the secret key is only known
by the software company, then the verification does not consist in a proof and the
customer will need to fully trust the software company during the use of the software.
Since this application is dedicated to very sensitive software, it is clearly desirable
that the customer can be formally convinced about the authenticity. Finally, we
note that conventional cryptography does not seem to achieve non-transferability
notion.

7.1.4 Credit Card Number Verification

Context. One of the major issues when using credit cards consists in verifying
the validity of the credit card number. A way for preventing the generation of fake
credit card numbers, could be to append a MOVA signature to a serial number of
the card. So, except by copying a valid card number or forging MOVA signatures,
it should not be possible (or difficult depending on the signature size) to generate
fake credit card numbers. The verification of the credit card number has to be done
online by establishing a connection with the credit card authority. A merchant who
sells some goods or services which are provided later to the customer can delay the
verification of all credit card numbers at the end of the day.

Major Advantages of MOVA. Since this number must be copied by hand such
as on internet, or by phone, it is desirable that this one is as small as possible. An

— 146 —

7.2. SMS Lottery

additional advantage is the batch verification of the MOVA signature. So, when the
merchant does not need to check the validity of the credit card number immediately,
he can verify all the credit card numbers simultaneously at the end of the day using
only one verification protocol with the credit card authority. Note that the efficiency
gain is rather for the credit card authority than for the merchant.

Alternatives. As usual, one of the major drawback of classical digital signatures
is the size. This would not be appropriate for credit card numbers where we need
a small number of digits. Replacing the MOVA scheme by a MAC algorithm, will
no more allow to verify several signatures at the same time. Moreover, this requires
to trust the credit card authority since this one could not provide any proof about
validity or invalidity of the credit card number with a MAC.

7.2 SMS Lottery

The aim of this section is to propose a protocol for playing lottery (or any kind of
similar games) in which the player receives a receipt by SMS based on a MOVA
signature. The role of the signature is to provide a strong evidence that the player’s
bid was registered by the lottery organization.

The work exposed in this section was realized as part of the master thesis [121]
of Florin Oswald.

7.2.1 Scenario

We consider a scenario in which a lottery player would like to play lottery using his
mobile phone. We would like that playing lottery is possible even with a mobile
phone having only basic features such as sending SMS composed only of text. To
participate in a lottery drawing, the player sends the drawing number (or drawing
date) and the selected bid by SMS. By default, the lottery ticket remains associated
to the phone number but can be associated to another one if one wishes to offer a lot-
tery ticket to someone else. The mobile communication company (service provider)
is responsible to charge the price of the “lottery ticket” on the phone account of the
player (based on a contract). It also forwards the information with the associated
phone number (called the order) to the lottery organization.

The lottery organization sends back a MOVA signature of the order. The or-
der and the MOVA signature is the lottery ticket. After the drawing, the player
with correct phone number can request his winnings by showing the ticket. Small
winnings may automatically be credited by the service provider.

In this scenario, we particularly take advantage of the size of the signatures and
non-repudiation of the MOVA scheme. While the former is required in order that a

— 147 —

7. Applications of the MOVA Scheme

signature fits in a SMS, the latter is crucial in case of dispute about the validity of
a ticket corresponding to a large winnings.

In our protocol, we consider the three following entities:

• the player (P)

• the service provider (mobile communication company) (S)

• the lottery organization (L)

The role of each entity is summarized below.

Player. The player simply wants to play at the lottery using SMS. To this, we
assume that his mobile phone communications are transmitted throughout the net-
work of the service provider S. He only needs a regular contract with this one in
order to have access to the lottery game. To play to the lottery, he sends information
related to the drawing and his chosen numbers by SMS to the lottery throughout
the network of S.

Service Provider. This entity is responsible for transmitting the communica-
tions1 between the player P and the lottery organization L which are required by
the lottery protocol. The main role of S is also to charge costs of the player on his
phone communication bill corresponding to the SMS lottery tickets he bought. An
additional task of the service provider consists in paying the small winnings to the
player. To this, the winnings can be credited to the player’s phone bill.

Lottery Organization. This one is mainly responsible for organizing the lottery
and notably the drawing operations. It receives the “SMS lottery orders”, checks
that the format is correct and generates a receipt using the MOVA scheme. L
stores all the lottery tickets and related information. After the drawing, the lottery
organization checks which tickets have some winnings and transmit related winnings
information by SMS to the corresponding players through S. As said above, small
winnings are directly credited by S to the corresponding players, while large winnings
should be addressed by other means.

7.2.2 Our Lottery Protocol

This lottery protocol is mainly composed of three sub-protocols which are respec-
tively used for the playing phase, the verification of the lottery ticket, and the

1Note that communications between the provider and the lottery organization are likely to be
transmitted on another communication channel like the Internet.

— 148 —

7.2. SMS Lottery

winnings distribution. We also consider one additional procedure for a player which
claims to have a winning ticket that the lottery organization does not accept as
valid.

Before a presentation of the protocols, we assume that the lottery organization
possesses a valid pair of keys associated to the MOVA undeniable signature scheme.

Playing Protocol

Here, we describe the so-called “playing protocol” which consists for the player in
sending the numbers of its choice for a drawing to the lottery organization. A
high-level description of the protocol is depicted in Figure 7.1.

ticket ticket

ProviderPlayer Lottery
request order

Figure 7.1: High-level description of the playing protocol

The detailed description is provided below.

1. P chooses the drawing number DrawN for which he would like to participate
and the information related to his bid (chosen numbers) denoted by Numbers.
He sends the request (DrawN, Numbers) by SMS to S.

2. S appends the phone number ID of P and sends the order (DrawN, Numbers, ID)
to the lottery.

3. L checks that (DrawN, Numbers) has the correct format and that the draw-
ing is in “playing” phase. The lottery organization keeps the information
(DrawN, Numbers, ID) called “ticket order” in memory. Then, L generates a
receipt

Rec := MOVA(DrawN|Numbers|ID)

by signing with the MOVA scheme. Then, the lottery sends the ticket

(DrawN, Numbers, ID, Rec)

to S with an additional information TiPr about the price of the ticket.

4. S forwards the ticket to the player and charges his account according to TiPr.

— 149 —

7. Applications of the MOVA Scheme

Remark 7.2.1. If a player wants to buy several tickets for the same drawing, it
may be required to identify each ticket separately. Thanks to a counter, one can
concatenate an incremented integer to ID which identifies each ticket. For instance,
instead of one identifier ID, we would get ID|1, ID|2, etc.

Verification Protocol

In order to formally guarantee the authenticity of the ticket’s receipt to the player,
this one needs to be given an access to a verification procedure with the lottery or-
ganization. The players will be given a verification Interface provided by the lottery
organization and which allow to verify the validity of a ticket. The verification is re-
stricted to the tickets for which the corresponding ticket order (DrawN, Numbers, ID)
was previously submitted in the playing protocol.

In practice, this interface is likely to be a software which can be installed on
a personal computer (or very advanced mobile phone) and connect to the lottery
for requesting a ticket verification. Moreover, since the interest of this lottery ap-
plication is to work on a very limited mobile phone, we cannot assume that this
verification can be achieved from the mobile phone.

The verification protocol is given below.

1. The player P sends the ticket (DrawN, Numbers, ID, Rec) through the verifica-
tion interface to L.

2. The lottery organization checks whether (DrawN, Numbers, ID, Rec) lies in his
database and verifies whether the MOVA signature Rec is valid or not. Ac-
cordingly, L interacts with P in a confirmation (resp. denial protocol) to show
that the ticket is valid (resp. invalid). If the ticket order does not lie in the
database, L does not launch a verification protocol but sends the message
“ticket not registered”.

Winnings Distribution Protocol

This phase occurs after the drawing has been made and consists for the lottery in
dealing with the winnings of lucky players.

1. After the drawing, L examines in its stored data which tickets are winning.
According to this information, the lottery organization sends the list of all
winning tickets with the corresponding amount of the winnings Wi to the
service provider.

2. S sends an SMS to each ID corresponding to the winning tickets containing Wi.
If Wi is small, the service provider automatically charges the player’s phone

— 150 —

7.2. SMS Lottery

account. In case of a big winnings, this is handled by classical means (bank
account transfer, etc.)

Dispute

Assume now that a player claims to have a valid winning ticket which is considered
as invalid by the lottery organization. So, if both parties (P and L) do not find
any agreement, the player can take legal action against the lottery. In this case, the
lottery organization has to perform a MOVA denial protocol to prove the invalidity
of the receipt in the presence of a legal authority.

Remark 7.2.2. In such a situation, the signature is used as a strong evidence that
the player behaved honestly. However, since the implementation of cryptography
in the real world cannot be considered as totally ideal, the signature should not be
an absolute mean to determine whether a lottery ticket was honestly obtained. For
instance, the ticket might have been generated by a lottery employee who got access
to the MOVA secret key. For such reasons, we believe that the final decision should
be taken by a legal authority after an investigation of the different facts.

7.2.3 Security Analysis

Forgery Attacks

If we put aside the possible misbehaviour of the service provider and the lottery
organization, the main threat concerns a malicious player willing to forge a false
(non-paying) winning lottery ticket. Such an adversary can be modeled as a MOVA
forger whose goal is to forge valid tickets and especially, the winning ones. Therefore,
this kind of attack seems to lie between an existentially forgery and universal forgery
attacks in terms of difficulty. While an adversary is not ensured to forge a valid (even
non-winning) ticket by succeeding in an existential forgery attack, this one does not
strictly need to succeed in a universal forgery attack in order to forge the ticket with
the highest winnings, since he may have several identifiers at disposal. This leads
us to consider the following adversarial game.

Gamelot-cma. Let M be the message space of all possible ticket orders and F be the
forger. First, F receives the lottery’s MOVA public key KS

p which was generated by

(KS
p ,KS

s)← SetupS(1k). Then, the game is composed of two phases called Pre-Draw
phase and Post-Draw phase respectively.

1. Pre-Draw phase. F has access to a signing oracle Sign, a verification oracle
Ver restricted to the message-signature pairs (m, σ) such that m was queried
to Sign, and possibly the random oracles (such as GenS in the MOVA case).

— 151 —

7. Applications of the MOVA Scheme

2. Post-Draw phase. A subset Mw ⊆ M composed of Nw different messages
is picked uniformly at random and is given to F . The forger F does not have
access to the oracles Sign and Ver anymore. At the end, F outputs a messsage-
signature pair (m∗, σ∗) and wins the game if m∗ ∈ Mw, the pair is valid, and
if m∗ has not been queried to the oracle Sign.

The success probability of F in the above game is denoted by Succlot-cma
F .

Note that the Pre-Draw phase corresponds to the period of time before the
drawing. At this moment, the adversary does not know which tickets have an
interesting winnings. After the drawing, the adversary does not have access to
the signature verifications and cannot buy any tickets for this drawing. Provided
that the lottery organization refreshes the MOVA pair of keys for each drawing, this
corresponds for the adversary to have no access to the oracles Sign and Ver anymore,
as modeled in the Post-Draw phase.

Below, we exhibit a reduction between the above game and the GHI problem us-
ing some similar simulation techniques which have been employed in Theorem 4.4.1
to show that MOVA resists existential forgery attacks.

Theorem 7.2.3. Let S = {(Xkey1, Ykey1), . . . , (XkeyLkey, YkeyLkey)} and Ntot de-
note the cardinality of M. Set pw := Nw/Ntot. Let qS be an integer satisfying
qS · pw ≥ 1. Assume that the signer’s public key is valid and GenS is a random ora-
cle. Consider the Lsig-S-GHI problem with the same parameters as for the MOVA
scheme, i.e., G = Xgroup, H = Ygroup. Assume that for any solver B with a given
complexity, we have

SuccLsig-S-GHI
B ≤ ε.

Then, any forger F with similar complexity using qS signing queries wins the lottery
game under a chosen-message attack with a probability

Succlot-cma
F ≤

(
qS∑
i=0

(
Nw

i

)(
Ntot−Nw

qS−i

)
(

Ntot

qS

) · (1− q)i

)−1

· ε
q
,

with q = 1/(pw + qSpw).

Proof. From a forger F who wins in the lottery game, we construct a simulator B
which solves the Lsig-S-GHI problem. As usual, B needs to simulate the lottery
game environment of F (different oracles) in order to use F towards solving the
GHIP challenge. First, the simulator B receives the GHIP challenge x1, . . . , xLsig.
He picks Nw different messages uniformly at random in M and build the set Mw.
Then, B runs the forger and simulates the queries to the random oracle GenS, qS

queries to the signing oracle Sign and qV queries to the oracle Ver. We can assume
that all messages sent to Sign resp. Ver were previously queried to GenS (since

— 152 —

7.2. SMS Lottery

the oracle Sign resp. Ver has to make such queries anyway). Additionally, we can
assume that the forged pair outputted by F has been queried to GenS. B simulates
the oracles GenS, Sign, and Ver in the Pre-Draw phase as follows.

GenS. As usual, the random oracle GenS is simulated by maintaining a list of the
queries with corresponding answers. A fresh query m is simulated as follows.
If m 6∈ Mw, B generates a type-1 answer. Otherwise, a type-1 answer is
generated with probability 1− q and a type-2 answer with probability q. We
recall that type-1 answers are of the form

Xsigi := dri +

Lkey∑
j=1

ai,jXkeyj for i = 1, . . . , Lsig,

while type-2 answers are of the form

Xsigi := dri + xi +

Lkey∑
j=1

ai,jXkeyj for i = 1, . . . , Lsig.

For each message, B keeps the coefficients ai,j’s and ri’s and answer type in
memory.

Sign. For a message m, if the answer to the GenS query of m was of type-1, then
B answers Ysigi :=

∑Lkey
j=1 ai,jYkeyj for i = 1, . . . , Lsig. Otherwise, it aborts

the simulation. The simulator adds a tag in the stored message m to specify
that m was queried to Sign and stores the signature σ as well.

Ver. For any message-signature pair (m,σ) queried to Ver, B first checks whether
m was previously submitted to Sign. If this is not the case, B answers the
tag “ticket not registered”. Otherwise, the simulator checks whether σ
is valid or not and simulates the appropriate protocol accordingly as in Theo-
rem 4.4.1.

In the Post-Draw phase, B releasesMw to F . Then, the simulator only needs to
simulate the oracle GenS. This can be done perfectly and exactly as in the Pre-Draw
phase. At the end, F outputs a pair (m∗, σ∗).

It remains to compute the probability for B to have simulated correctly and to
solve the GHIP instance. First, we note that the oracles are perfectly simulated
except when a type-2 query is sent to the signing oracle. Hence, the probability
that B simulates Sign correctly is given by

γ(q) :=

qS∑
i=0

(
Nw

i

)(
Ntot−Nw

qS−i

)
(

Ntot

qS

) · (1− q)i,

— 153 —

7. Applications of the MOVA Scheme

where Ntot is the cardinality ofM and Nw the cardinality ofMw. The proof can be
concluded by remarking that the probability for a successful F to have a simulated
GenS answer of m∗ of type-2 is equal to q. A heuristic argument leads us to consider
q = 1/(pw + qSpw) to maximize the expression q · γ(q).

In what follows, we briefly explain how we can approximate γ(q) and how the
choice for q in the above theorem has been made. The main reason we get a probabil-
ity in a so complicated form, comes from the fact that picking qS different messages
in M uniformly at random and counting the number of messages in Mw does not
formally lead to a binomial distribution. This leads to a hypergeometric distribution
of the form (

Nw

i

)(
Ntot−Nw

qS−i

)
(

Ntot

qS

) .

However, it is well known that if Ntot is much larger than qS, the hypergeometric
distribution is very close to a binomial distribution. In this case, probabilities for
the different messages to lie inMw can be seen as independent. Thus,

γ(q) ≈ (1− q · pw)qS ,

where pw := Nw/Ntot. We set γ0(q) := (1− q · pw)qS . By differentiating the function
q · γ0(q), we derive that choosing

q :=
1

pw + qSpw

leads to a maximized value of the function q · γ0(q). This value can be bounded as
follows

1

pw + qSpw

(
1− 1

1 + qS

)qS

≥ 1

e(qS + 1)pw

,

where e denotes the natural logarithm base. Note that both terms are very close
when qS is large. This shows that

Succlot-cma
F ≈ e(qS + 1)pw · ε (7.1)

for qS reasonably large but enough smaller than Ntot.

Additional Threats

Here, we would like to discuss some other threats related to this lottery scenario.
They are of less interest for this thesis since they are not related with the different
parameters of the MOVA scheme. For this reason, we are not going to make a
detailed and exhaustive treatment. The interested reader will find more details in
Oswald Master’s thesis [121].

— 154 —

7.2. SMS Lottery

Invalid Signatures Released by the Lottery Organization. A major risk for
the players comes from the possible release of invalid MOVA signatures by the lottery
organization. In practice, the verification interface is likely to be used only by a small
number of skeptical players. On the one hand, this verification interface should
prevent from players claiming after the drawing to have received an invalid ticket
and that the lottery organization cheated. In short, the responsibility for verifying
the ticket authenticity is shifted to the player. On the other hand, this verification
interface should also prevent the lottery to generate invalid tickets. Namely, before
the drawing the value of a ticket is very small and the incentive for the lottery to
cheat at this point is quite low. Since the lottery take risks to be detected by some
players and have its credibility and reputation affected, it is unlikely that the lottery
is going to cheat for a very small amount of money.

In addition to the tickets verification by the player, one can possibly imagine
that the service provider is involved in checking the authenticity of the tickets.
Since its reputation may also be affected by some complains, this one may decide
to proceed in some ticket verifications. What is more, the service provider has the
infrastructure at disposal for easily getting access to signature verifications. Namely,
the provider certainly communicates with the lottery using computers through a
classical network. To summarize, a verification of tickets by the service provider
should not be a constraining task. The verification can also be done at the end of
each day or just before the drawing using a batch verification of the MOVA scheme.

Non-Cooperation by the Lottery in the Verification Protocol. The mali-
cious behaviour of the lottery organization presented above, can be thwarted pro-
vided that this one cooperates for the verification protocol. However, the lottery
organization may claim that this ticket order was not registered in its database in
order to avoid a verification. To prevent from such a behaviour, the players should
be given a procedure allowing them to provide evidence that they previously made
a ticket order. One could imagine that in case of non-cooperation by the lottery, the
player can contact the service provider which stores all the communications related
to the lottery game in order to get a certification that he really submitted this ticket
order. In this way, the lottery should not be able to refuse a valid verification request
provided that the service provider does not collude with the lottery organization ma-
liciously. Again, since the ticket value at this time is quite small, the interest for
the lottery or the service provider to cheat is very limited. Moreover, by doing so
both entities take risk to create a damage to their image. Finally, we suggest that
the above procedure should not be totally free of charge in case the player made an
unjustified request in order to prevent from possible abuses by players.

— 155 —

7. Applications of the MOVA Scheme

Privacy of the Players. Identity of players and especially the “lucky” ones
should be kept secret by the lottery organization. Here, all data are transmitted
through the communication channels of the service provider. So, it is very important
that these communications remain confidential and some legal means are required
to prevent the service provider from misusing information. For instance, the service
provider could try to sell some knowledge about big winners.

7.2.4 Parameter Specifications and the Swiss Lotto Case

Here, we mainly derive some MOVA parameters for our SMS lottery protocol when
applied to Swiss Lotto.

In the Swiss Lotto context, the player needs to choose 6 numbers out of 45 ones.
A draw consists in picking 6 regular numbers and one additional number. The player
wins some money if at least 3 regular numbers were found. Hence, the total number
of possible bids is

(
45
6

)
= 8’145’060 and the total number of winning bids is

6∑
i=3

(
6

3

)(
39

6− i

)
= 194’130.

Consequently, we get the ratio pw = Nw/Ntot = 194’130/8’145’060 ≈ 0.0238. Note
that the message space M, we can consider in the adversary model may be larger
than 8’145’060 (e.g., several identifiers). However, the ratio pw between the number
of winning tickets and the overall number of tickets remains constant. We also recall
that the approximation (7.1) of the reduction factor obtained in Theorem 7.2.3 only
depends on qS and pw. Some experimental computations showed that at least for
the values 26 ≤ qS ≤ 215, Ntot := 8’145’060, and Nw := 194’130 this approximation
is extremely accurate.

As suggested in the previous chapter, we propose to take the Legendre symbol
Hom = (·/p) defined on Z∗n, where n = pq is an RSA modulus. The size of a modulus
of at least 1024 bits is recommended. Provided that the lottery does not use the
key for the long term, 1024 bits are sufficient at this time and 1536 bits offer a very
good margin of security.

To determine the signature size, we suggest a security of 2−30, i.e.,

Succlot-cma
F ≤ 2−30.

Since each query to the signing oracle costs a ticket price (about 1 swiss francs),
we can assume that the adversary is not going to make too many signing queries
so that qS = 215 = 32’768 is sufficient. Applying Theorem 7.2.3 and assuming that
SuccLsig-S-GHI

B ≈ 2−Lsig, we deduce that Lsig should be 42 bits long, which can be
encoded with 8 alphanumeric characters. To summarize, an adversary spending

— 156 —

7.2. SMS Lottery

about 30’000 Swiss francs has only a probability of 2−30 ≈ 10−9 to forge a win-
ning ticket. Spending more money does not seem a better strategy since the ratio
between qS (cost for the adversary) and the success probability is constant by the
approximation (7.1).

Since invisibility is not an issue in the lottery scenario, we do not need to adjust
the parameters to achieve this property. Soundness probabilities of the verification
protocols can be obtained exactly as in Subsection 4.4.4. The 4-move protocols lead
to better parameters than their 2-move versions, so that we suggest the former.
Hence, Icon = Iden = 30 leads to a soundness probability of 2−30 if the commitment
binding property is ideal. For the validation of the public key, we propose to use
the setup variant 4, which allows to consider Lkey = 2. As in Subsection 4.4.4, we
can show that Ival = 90 with qGenM = 260 corresponds to a security of 2−30.

— 157 —

Chapter 8
Generalized Chaum’s Designated
Confirmer Signature

The goal of this chapter is to review the original scheme of Chaum [38] as well
as the underlying ideas of his construction in a formal and more general setting.
Namely, his original article neither presents a formal model nor a security proof.
Our principal motivation is that the scheme of Chaum remains at this time one of
the most simple and elegant construction of designated confirmer signature scheme.
In addition to this, we study the possibility to use an undeniable signature scheme
in the construction of a designated confirmer signature, in particular reusing the
confirmation and denial protocols.

As far as we know, the only generic constructions of designated confirmer signa-
tures which are based on an undeniable signature scheme are that of Chaum [38] and
the one of Okamoto [118]. The security of the latter was only proved in 2001 in [119]
and its resistance against existential forgery under an adaptive chosen-message at-
tack holds only against a classical adversary, i.e., anybody but the confirmer. To our
best knowledge, the security of the Chaum’s construction has not been proved yet.
Moreover, the only known security flaw of this scheme was mentioned by Camenisch
and Michels in [30]. The authors presented an attack against the invisibility of sig-
natures in the adaptive scenario against the scheme of Michels and Stadler [105] and
argued that the same kind of attack holds against the scheme of Chaum. In this
attack, the adversary is able to transform a given message-signature pair in a new
one such that the latter pair is valid only if the original pair is valid. Hence, the
adversary breaks the invisibility of the first signature by sending the second pair to
the confirmer for a confirmation (or denial) protocol.

In the first section, we present the generalized construction based on the scheme
of Chaum. To this end, we use some cryptographic primitives such as an existentially
forgeable classical signature and an existentially forgeable undeniable signature. In

8. Generalized Chaum’s Designated Confirmer Signature

the subsequent section, we rely the security properties on that of the underlying
primitives in the random oracle model. For instance, resistance against existential
forgeries hold provided the existentially forgeable signature resists universal forgery
under a no-message attack. We then propose a practical instantiation based on the
undeniable signature scheme of Chaum and the plain DSA scheme. We conclude by
showing that our construction is consistent with a theoretical result of Okamoto [118]
stating that the design of a designated confirmer signature requires cryptographic
primitives equivalent to public-key encryption.

8.1 The Generalized Chaum’s Construction

To begin with the development of our construction, we recall some notations and the
involved parties. We consider three entities that are the signer (S), the confirmer (C)
and the verifier (V). They all possess a pair of public/secret key KU := (KU

p ,KU
s)

for U ∈ {S,C,V}. The set of the message space is denoted by M and the set of
the signature space is denoted by Σ. The designated confirmer signature scheme
constructed in this section is denoted by Sign.

8.1.1 Building Blocks

In what follows, we present the different building blocks which are used to construct
our designated confirmer signature scheme. To simplify the notations, the pair of
keys of cryptographic algorithms are directly denoted with respect to their corre-
sponding owner (signer S or confirmer C) in the designated confirmer signature
scheme Sign.

Existentially Forgeable Signature. We consider an existentially forgeable sig-
nature ExSign such as the plain RSA or plain DSA1 scheme. We have a setup which
generates the keys associated to this scheme (that of S), (KS

p ,KS
s) ← SetupS(1k)

which depends on a security parameter k. Let Mex denote the message space and
Σex denote the signature space of this scheme. We have a probabilistic signature
generation algorithm

σex ← ExSign(mex,KS
s),

and a deterministic verification algorithm

0 or 1← ExVerify(mex, σex,KS
p)

outputting a bit telling whether (mex, σex) ∈Mex×Σex is a valid message-signature
pair. Both are some polynomial time algorithms. In addition, we have a probabilistic

1Plain DSA is DSA [4,54] without a hash function.

— 160 —

8.1. The Generalized Chaum’s Construction

polynomial time algorithm

(mex, σex)← ExForge(KS
p)

which existentially forges a valid message-signature pair such that mex is uniformly
distributed in Mex. Moreover, for a given message mex, the distribution of σex

generated by ExForge is identical as that generated by ExSign for any KS
p .

To prove the security of Sign, we will need to assume that ExSign satisfies uni-
versal unforgeability under a no-message attack.

Definition 8.1.1. We say that the signature scheme ExSign resists against a uni-
versal forgery under a no-message attack if there exists no probabilistic polynomial
time algorithm B that wins the following game with a non-negligible probability.

Game: B first receives the public key KS
p from (KS

p ,KS
s) ← SetupS(1k) generated

randomly and depending on the security parameter k. Then, B receives a challenged
message mex ∈U Mex picked uniformly at random. At the end, B wins this game if
it outputs a signature σex such that ExVerify(mex, σex,KS

p) = 1.

Our definition of universal forgery is slightly weaker than usual as in [129], where
a successful adversary should be able to forge a valid signature to every challenged
message of the message space. In a situation such as plain RSA where messages can
be blinded, the two notions are equivalent.

Group Structure. We need Mex to form a group with an internal operation ¯.
The inverse of an element mex ∈Mex with respect to this group operation is denoted
m−1

ex .

Existentially Forgeable Undeniable Signature. We consider an existentially
forgeable undeniable signature scheme UnSign whose associated pair of keys is that
of the confirmer, i.e., (KC

p ,KC
s) ← SetupC(1k). We denote the message space Mun

and the signature space Σun. We have two probabilistic polynomial time algorithms

σun ← UnSign(mun,KC
s) and (mun, σun)← UnForge(KC

p),

where the former generates a signature and the latter outputs a valid message-
signature pair such that mun is uniformly distributed in Mun. In addition, for a
given message mun, the distribution of σun generated by UnForge is identical as that
generated by UnSign for anyKC

p . Furthermore, we also have two interactive protocols
UnConfirm and UnDeny between C and V. They correspond to the confirmation and
denial protocol of UnSign respectively and are assumed to satisfy classical properties
such as completeness, soundness, zero-knowledge, and non-transferability.

— 161 —

8. Generalized Chaum’s Designated Confirmer Signature

Additionally, we will assume that the function UnSign(·,KC
s) is balanced on the

set Σun for any secret key KC
s . So, the probability for a pair (mun, σun) picked

uniformly at random in Mun × Σun to be valid is equal to ν := v/|Σun|, where v
denotes the number of valid signatures related (and independent) to each mun.

Some examples of such undeniable signatures are the RSA based scheme from
Gennaro et. al [66], the scheme of Chaum [36] based on the discrete logarithm prob-
lem, and the MOVA scheme presented in Chapter 4. All these schemes present this
property provided that we remove some hash functions or pseudorandom generators.
Furthermore, we note that these obtained signatures schemes are deterministic and
therefore cannot satisfy the invisibility property under a chosen-message attack.

Random Hash Function. We consider a hash function h :M→Mex which is
collision-resistant. We furthermore assume that h is full-domain i.e., its range is the
full setMex. h will be considered as a random oracle.

Random Permutation. We consider a public permutation C :Mex →Mex. C
will be considered as a random permutation oracle (see [127, 132]) i.e., C is picked
uniformly at random among all permutations over Mex. We assume that we can
send queries to the oracle C and the oracle C−1.

Representation Function. We consider a fixed bijection B :Mun×Σun →Mex.
In what follows, we will always work with the function R := C ◦B instead of C and
B separately. Note that R is then a random bijective function.

8.1.2 The Scheme

The generic construction we develop below is a natural generalization of Chaum’s
scheme [38]. The signer generates a valid message-signature pair with respect to an
existentially forgeable undeniable signature scheme. Next, he mixes this pair with
a message digest of the message and finally signs the result in a classical way using
ExSign. So, the validity of this designated confirmer signature relies on the validity
of the message-signature pair which can only be confirmed by the confirmer. Since
ExSign is existentially forgeable, anybody could have produced a signature with an
invalid message-signature pair. On the other hand, when the message-signature
pair is valid the designated confirmer signature can be produced only by the signer.
Putting all together, the help of the confirmer is required in order to deduce the
validity or invalidity of a message pair signature with respect to the designated
confirmer signature scheme Sign.

Here are the different algorithms of this construction.

— 162 —

8.2. Security Results

Setup Three pairs of keys are generated (KU
p ,KU

s) ← SetupU(1k) from a security
parameter k, where U ∈ {S,C,V}.

Sign Let m ∈ M be a given message to sign. The signer runs the algorithm
UnForge to obtain a pair (mun, σun) and computes h(m). He then computes
mex := R(mun, σun)¯ h(m). The designated confirmer signature of m is then
σ = (mex, σex), where σex ← ExSign(mex,KS

s).

Confirm The verifier and the confirmer first check that ExVerify(mex, σex,KS
p) = 1.

They both compute mex ¯ h(m)−1, apply R−1, and retrieve (mun, σun). Then
V interacts with C in a proof protocol in which C proves that (mun, σun) is
valid using UnConfirm. If this is verified the protocol (verifier) outputs 1.

Deny The verifier and the confirmer first check that ExVerify(mex, σex,KS
p) = 1 and

retrieve (mun, σun) as in the confirmation. Then, V interacts with C in a proof
protocol in which C proves that (mun, σun) is invalid using UnDeny. If this is
verified the protocol (verifier) outputs 1.

Remark 8.1.2. Note that the confirmer could also confirm or deny signatures in an
anonymous way: he does not need σex nor mex but only mun and σun which contain
no information about the signer or the message. This could be suitable for some
applications.

8.2 Security Results

8.2.1 Security Against Existential Forgeries

The following result shows that our construction leads to a scheme resisting ex-
istential forgery against an adaptive adversary. This security property is proved
according to the model used in Definition 3.3.6.

Theorem 8.2.1. The scheme Sign resists against existential forgery under an adap-
tive chosen-message attack provided that

1. h is a random hash function oracle and C/C−1 is a random permutation oracle

2. ExSign resists against universal forgery under a no-message attack

3. valid (mun, σun) pairs are sparse in Mun × Σun (i.e., ν ¿ 1)

even if the adversary is the confirmer C.
More precisely, for any forger F which wins in the game of existential forgery under
an adaptive chosen-message attack against Sign with success probability

Succef−cma
Sign,F = ε

— 163 —

8. Generalized Chaum’s Designated Confirmer Signature

using qh h-queries, qR R-queries, q∗R R−1-queries, and qS Sign queries, we can con-
struct another adversary B which wins the game of universal forgery under a no-
message attack against ExSign with success probability

Succuf−nma
ExSign,B ≥

1

qR · qh

(
ε− (qR + q∗R)2

|Mex| − 2ν

)

using one run of F .

Proof. In this proof, following Shoup’s methodology [138], we provide a sequence
of games beginning from the real attack and reach a game allowing to deduce a
universal forgery against ExSign. B is given a challenged public key KS

p generated

by SetupS and a challenged message mchal ∈U Mex picked uniformly at random for
which it has to forge a signature σchal such that ExVerify(mchal, σchal,KS

p) outputs 1
with a non-negligible probability. In what follows, we denote the probability event
that F succeeds in forging a signature in the Game i as Si.

Game 1. Here, we consider the real attack game with the random oracle h and
random function oracle R. First, F receives a challenged public key KS

p generated

by SetupS and for which it will have to existentially forge a message signature pair.
Since the adversary F can be the confirmer, F also gets the confirmer’s key pair
(KC

p ,KC
s) generated by SetupC. The adversary makes adaptively and in any order

the following queries:

• F sends qh messages m1, . . . , mqh
∈ M to the random oracle h and receives

the corresponding hash values h1, . . . , hqh
.

• F sends qR pairs (mun,1, σun,1), . . . , (mun,qR
, σun,qR

) to the random function or-
acle R and receives the corresponding values f1, . . . , fqR

.

• F sends q∗R elements f ∗1 , . . . , f ∗q∗R to the random function oracle R−1 and receives

the corresponding values (m∗
un,1, σ

∗
un,1), . . . , (m

∗
un,q∗R

, σ∗un,q∗R
).

• F sends qS messages ms
1, . . . ,m

s
qS

to the signing oracle Sign (with respect to the
challenged public key) and receives the corresponding signatures σ1, . . . , σqS

.
We assume that qh and qR includes the queries made by Sign.

After these queries, F outputs a message m (not queried to the signing oracle) with
a correct forged signature σ with success probability Pr[S1] = ε.

Note that the challenged public key B received in the universal forgery game
against ExSign can be given to F in Game 1. Namely, both keys are identically
generated so that the simulation is perfect.

Game 2. Here, B simulates the random oracle h as well as the random function R
using two appropriate lists h-List and F-List. It will apply the following rules:

— 164 —

8.2. Security Results

• To a query mi, B picks hi uniformly at random inMex and adds the element
(mi, hi) in h-List if mi is not already in h-List. Otherwise, it simply looks in
the h-List and answers the corresponding h-value.

• To handle the R and R−1 oracle queries, it proceeds in a similar way. To a
query (mun,i, σun,i), it picks fi uniformly at random inMex and adds the pair
((mun,i, σun,i), fi) in F-List if (mun,i, σun,i) is not already in F-List . Otherwise,
B answers the corresponding fi taken from F-List. Note that the simulation
fails when collisions occur for some distinct fi since R is a bijective function.
It proceeds exactly in the same way for the R−1 queries by using the same list
F-List and picking (m∗

un,i, σ
∗
un,i) uniformly at random in Mun × Σun when the

corresponding query f ∗i is fresh.

Since h is a random oracle and R a random function oracle, we see that the simulation
is perfect except when a collision on outputs of R resp. R−1 occurs. Let CollF be the
event that such a collision occurs in Game 1 (equivalently in Game 2). Obviously,
Pr[S1 ∧ ¬CollF] = Pr[S2 ∧ ¬CollF], so we can apply Shoup’s lemma [138] and obtain

|Pr[S2]− Pr[S1]| ≤ Pr[CollF] ≤ (qR + q∗R)2

|Mex| .

Game 3. This game is identical as Game 2 except that B simulates the Sign
oracle without KS

s . Sign must query ms
i to h. This is simulated as explained in

Game 2. Let ht be the answer. Sign must also run UnForge which can be trivially
run by B. Let (m′

un,i, σ
′
un,i) be the forged message-signature pair with respect to the

Unsign scheme. It also runs the probabilistic algorithm ExForge which outputs a valid
message-signature pair (mex,i, σex,i) with respect to ExSign. Sign must also query R
with (m′

un,i, σ
′
un,i) and gets some fs. B simulates the value fs := R(m′

un,i, σ
′
un,i) by

setting
fs := mex,i ¯ (ht)

−1.

Note that if (m′
un,i, σ

′
un,i) or fs is an element which lies already in F-List, B has to

abort the simulation. Namely, in the first case it could not choose the output value
fs while in the second case it might fail the simulation if fs has a preimage which
is not a valid message-signature pair in Mun × Σun. Since the collisions related to
the outputs of R and R−1 (even those queried by ExSign) are already cancelled in
Game 2, such bad events do not happen here. Hence, we notice that the simulation
is perfect since ExForge outputs an mex,i which is picked uniformly inMex and that
σex,i has the same distribution as a one generated by ExSign (assumption on ExForge).
Thus, for any ht the distribution of fs is uniform as well and the distribution of the
pairs (mex,i, σex,i) is the same as that produced Sign. We have

Pr[S3] = Pr[S2].

— 165 —

8. Generalized Chaum’s Designated Confirmer Signature

Game 4. Here, we would like to obtain a game where the output forged message-
signature pair (m,σ) = (m, (mex, σex)) has the two following properties:

• m was queried to the random oracle h (necessarily not through Sign).

• f := mex ¯ h(m)−1 is an output from a query made to the oracle R (maybe
through Sign).

The first condition does not hold with a probability less than 1/|Mex| since the
adversary F could not do better than guessing the right h(m). The second one does
not hold if F guessed the right f (i.e., with probability up to 1/|Mex|) or if it queried
f to R−1 oracle and obtained a valid signature pair (mun, σun), i.e., with probability
up to ν since UnSign is balanced. The probability that this condition does not hold
is then less than max(1/|Mex|, ν) which is ν since 1/ν < |Σun| < |Mex|. Therefore,

|Pr[S4]− Pr[S3]| ≤ 1

|Mex| + ν ≤ 2ν.

Game 5. B picks j ∈U {1, . . . , qh}, ` ∈U {1, . . . , qR} at the beginning and succeeds
if m was the jth query to h and mex ¯ h(m)−1 was the output from the `th query
to R. We denote this event by B. We have

Pr[S5 ∧ B] =
1

qh · qR

Pr[S4].

Game 6. Here, B simulates the output hj by setting hj := f−1
` ¯ mchal. This

simulation is perfect because mchal is an element picked uniformly at random and is
unused so far. Thus,

Pr[S6 ∧ B] = Pr[S5 ∧ B].

Finally, we notice that F forged an ExSign signature to the message mchal if
it succeeds in the Game 6 and the event B occurs since m = mj, f = f` and
mex = mchal in this case. We then have Succuf−nma

ExSign,B = Pr[S6 ∧ B]. Thus,

Succuf−nma
ExSign,B ≥

1

qR · qh

(
ε− (qR + q∗R)2

|Mex| − 2ν

)
.

8.2.2 Invisibility

Lunchtime Attacks

The following result shows that our generalization of the Chaum’s scheme is invisible
under a lunchtime chosen-message attack. The lunchtime attacks against invisibility
are specified in Definition 3.3.3 and Definition 3.3.8.

— 166 —

8.2. Security Results

Theorem 8.2.2. Assume that h and C are fixed and that σun ← UnSign(mun,KC
s)

is uniformly distributed for any fixed key KC
s when mun is uniformly distributed. For

any invisibility distinguisher D under a lunchtime chosen-message attack against
Sign with advantage Advinv-lcma

Sign,D = ε > 0, there exists an invisibility distinguisher UD
under a lunchtime known-message attack against UnSign with advantage

Advinv-lkma
UnSign,UD = ε′ ≥ ε/2

which uses one run of D.

Proof. First UD is fed with KC
p issued from (KC

p ,KC
s) ← SetupC(1k). Then, UD

runs (KS
p ,KS

s) ← SetupS(1k) and transmits KC
p ,KS

p ,KS
s to D. The answers of the

oracle queries from D will be simulated by UD. Since D has the signer’s secret key
KS

s , it does not need any access to a signing oracle. UD simulates the oracle queries
to the confirmation and denial protocols as follows:

• To a message-signature pair (m, (mex, σex)), UD checks first that (mex, σex) is
a valid pair with respect to ExSign. It retrieves the corresponding (mun, σun)
and forwards this query to the confirmation (or denial) protocol oracle with
respect to UnSign.

At a time, D sends two messages m0,m1 ∈ M to UD. UD receives two random
messages m0

un,m
1
un ∈ Mun and a signature σun ∈ Σun (generated in the following

way σun ← UnSign(mb
un,KC

s)). Then, UD picks two random bits b1, b2 ∈U {0, 1},
sets

mex = R(mb2
un, σun)¯ h(mb1),

computes σex = ExSign(mex,KS
s) and sends σ = (mex, σex) to D. Then, D answers

a bit b′′ to UD. Finally, UD answers a bit b′ = b1 ⊕ b2 ⊕ b′′ (If D aborts, we pick
a random b′′.) to its challenger. It remains to compute the advantage UD. To this
end, we compute Pr[b′ = b] = Pr[b′ = b ∧ b2 = b] + Pr[b′ = b ∧ b2 6= b]. We also have

Pr[b′ = b ∧ b2 6= b] = Pr[b′′ = b⊕ b2 ⊕ b1 ∧ b2 6= b] = Pr[b′′ = ¬b1|b2 6= b] · 1
2
.

When b2 6= b then (mb2
un, σun) is uniformly distributed and independent from b1,

hence b′′ is independent from b1. Thus, Pr[b′ = b ∧ b2 6= b] = 1/4. We also have

Pr[b′ = b ∧ b2 = b] = Pr[b′ = b|b2 = b] · Pr[b2 = b] = Pr[b′′ = b1|b2 = b] · 1
2
.

Without loss of generality, we can assume that Pr[b′′ = b1|b2 = b] ≥ 1/2 so that
Pr[b′′ = b1|b2 = b] = ε/2 + 1/2. Therefore, we obtain

Pr[b′ = b] =
1

2
+

ε

4
.

— 167 —

8. Generalized Chaum’s Designated Confirmer Signature

Since this probability does not depend on the bit value b, we finally have

ε′ = Pr[b′ = 0|b = 0]− Pr[b′ = 0|b = 1] =
1

2
+

ε

4
−

(
1−

(
1

2
+

ε

4

))
=

ε

2
,

which concludes the proof.

Adaptive Attacks

The scheme Sign does not satisfy the stronger adaptive invisibility notion defined in
Camenisch and Michels [30], i.e., when the distinguisher can continue to query the
oracles after he is given the challenge. Namely, after having received the challenged
signature σ, D could deduce the two pairs (m0

un, σ
0
un), (m1

un, σ
1
un) which would cor-

respond to m0 and m1. Then, D generates a signature σ′ on another message m′ by
using (m0

un, σ
0
un) and queries the pair (m′, σ′) to the confirmation and denial oracle.

Depending on the answer, D deduces whether (m0
un, σ

0
un) is valid or not. From this,

we see that D wins the invisibility game under an adaptive attack.

The fundamental problem relies on the fact that the adversary can always retrieve
the corresponding pair (mun, σun) (as any verifier) from a message-signature pair with
respect to Sign. He can then sign a new message m′ by reusing the pair (mun, σun)
and query the obtained pair to the Confirm or Deny oracle. Assuming that the verifier
has to retrieve (mun, σun), the only way to thwart such an attack is to make sure
that the adversary cannot generate a new signature with another message m′ with
the same pair (mun, σun). This seems to imply that (mun, σun) has to depend on m.
Moreover, the verifier should not be able to verify how (mun, σun) was generated since
it would trivially break the invisibility. This leads us to believe that the signer has to
encrypt an element with the confirmer’s secret key such as in the scheme proposed
by Camenisch and Michels [30]. Obviously, the above discussion motivates the fact
that we should strongly modify the generalized Chaum’s scheme in order to obtain
invisibility against an adaptive adversary.

8.2.3 Other Security Properties

The other security properties of our scheme are easier to prove, namely the com-
pleteness of the confirmation resp. denial protocol is straightforward. The other
properties such as the soundness and non-transferability are inherited from the un-
deniable signature scheme. The non-coercibility is obtained if the signer deleted
intermediate computations from UnForge. In this case, the invisibility of the un-
deniable signature scheme applies, since this one holds even if the distinguisher is
given KC

s . Note that receipt-freeness is not guaranteed.

— 168 —

8.3. A Practical Example

8.3 A Practical Example

Here, we propose a practical realization of the presented construction quite similar to
that of Chaum [38]. First, we consider the Chaum’s undeniable signature scheme [36]
for UnSign. Let p be a prime integer of 1024 bits and g be a public generator of
Z∗p. Then, (KC

s ,KC
p) = (c, gc mod p) := (c, h) for a c ∈U Z∗p−1 picked uniformly

at random. We recall that Chaum’s undeniable signature of a message mun ∈ Z∗p
is mc

un mod p. Hence, UnForge can be implemented by picking a random element
r ∈U Zp−1 uniformly at random and outputting the pair

(mun, σun) := (gr mod p, hr mod p).

The random function R applied on (mun, σun) can be implemented by computing an
AES with a fixed key in a kind of CBC mode on mun||σun by

B(mun||σun) = (x0|| . . . ||x15)

where xi ∈ {0, 1}128 for i = 0, . . . , 15 and C(x0|| . . . ||x15) = (x16|| . . . ||x31) with

xi = AES(xi−16)⊕ xi−1,

for i = 16, . . . , 31. Note that we must choose p close enough to 21024. The hash
function h can be instantiated with SHA-1 by

h(m) = trunc2048(SHA-1(1||m)|| . . . ||SHA-1(13||m)),

where trunc2048 outputs the 2048 most significant bits of the input. The group
operation ¯ can be replaced by the XOR operation ⊕ on the set {0, 1}2048. We
finally take the plain DSA scheme for ExSign. Let q1 be a prime integer close to
22048, a large prime number q2 = aq1 + 1 and a generator of Z∗q2

whose a-th power is
denoted as gq. Then, (KS

s ,KS
p) = (x, gx

q mod q2) for x ∈U Z∗q1
uniformly at random.

Then, σex = (r, s), where

r = (gk
q mod q2) mod q1 and s =

mex + xr

k
mod q1

for a random k ∈U Z∗q1
.

8.4 On Feasibility Results Based on Cryptographic

Primitives

8.4.1 Discussion

This subsection provides a discussion on the relevance of the primitives used in
the generalized Chaum’s designated confirmer signature scheme. Namely, we would

— 169 —

8. Generalized Chaum’s Designated Confirmer Signature

like to explain why this construction is possible although a previous result due to
Okamoto [118] seems at the first glance to provide strong evidence of its impossibility.

The study of relations between the cryptographic primitives always played a cen-
tral role in cryptography. In particular, it allows to clarify the kind of primitives
required to achieve the security of a given construction. Examples of well-known
basic primitives are one-way functions, trapdoor one-way functions, or trapdoor pred-
icates which were introduced by Goldwasser and Micali [73]. Here, we will focus on
two classes of equivalent primitives, that of one-way functions and that of trapdoor
predicates. These two classes contain respectively two major cryptographic primi-
tives, namely the digital signatures resp. the public-key encryption. Rompel [133]
proved that one-way functions are equivalent to signatures and Goldwasser and
Micali [73] showed the equivalence between trapdoor predicates and public-key en-
cryption. Since then, several cryptographic primitives have been shown to belong to
one of these classes, e.g., undeniable signatures exist if and only if digital signatures
exist [23].

Soon after their invention, designated confirmer signatures were proved to belong
in the public-key encryption class [118]. This showed that despite of their similarities
to undeniable signatures these two primitives are not equivalent. Separation between
these two classes was first proved by Impagliazzo and Rudich [78] in the black-box
case, i.e., when the primitives are considered as black-box. More precisely, they
showed that a non-separation in the black-box case would imply to get a proof that
P 6= NP . Since such a proof of this statement is unlikely to appear, the above result
is a strong argument for black-box separation. This result was improved by Reingold
et al. [130] who proved the above separation unconditionally, i.e., without using an
implication towards a proof of P 6= NP in the case of a non-separation. Hence, this
shows that the construction of a designated confirmer signature requires a primitive
equivalent to the public-key encryption. Note that the black-box assumption is
not a strong restriction in our context since almost any reductions considered in
cryptography are black-box.

Our proposed construction seems only to be based on primitives belonging to
the digital signatures class. Actually, this comes from an insufficient precise way to
characterize cryptographic primitives. For instance, when we talk about a digital
signature scheme, we mean a signature which is resistant to existential forgery under
an adaptive chosen-message attack. Similarly an undeniable signature is meant to be
implicitly secure in terms of existential forgery attacks and signatures invisibility. In
this generalized Chaum’s scheme, we have considered a special kind of undeniable
signature which is existentially forgeable but remains invisible under a lunchtime
known-message attack. In the next subsection, we prove that the existence of such
a primitive indeed implies the existence of a public-key encryption semantically
secure under a chosen-plaintext attack (IND-CPA). So we prove that undeniable
signatures may belong to two different classes depending on the security properties

— 170 —

8.4. On Feasibility Results Based on Cryptographic Primitives

we require. Paradoxically, although this kind of undeniable signature satisfies weaker
security properties than usual, it belongs to a stronger class namely that of public-
key encryption. Intuitively, this can be explained by the fact that it seems more
difficult for an existentially forgeable undeniable signature to remain invisible than
for an undeniable signature which is resistant to existential forgery attacks.

8.4.2 UnSign and Public-Key Encryption

We explain here how we can construct an IND-CPA public-key cryptosystem from the
existentially forgeable undeniable signature scheme UnSign. We recall that UnSign
is assumed to satisfy invisibility under a lunchtime known-message attack (this was
required to prove that Sign is invisible under a lunchtime chosen-message attack).
For the sake of simplicity, this cryptosystem will encrypt only one bit at a time.
We denote the encryption scheme PKE. It is composed of three polynomial time
algorithms which are the key generator KGen, the encryption algorithm Enc, and
the decryption algorithm Dec. The scheme is inspired from Okamoto [118] and a
paper of Abdalla and Warinschi [1].

KGen The key generator KGen generates a pair of key (pk, sk) by calling the key
generator of UnSign. It computes (KC

p ,KC
s) ← SetupC(1k) from the security

parameter k and sets (pk, sk) := (KC
p ,KC

s).

Enc Let b ∈ {0, 1} a bit to encrypt. If b = 0, we call the probabilistic algorithm Un-
Forge to generate a valid pair (mun, σun)← UnForge(KC

p). The pair (mun, σun)
is set to be the ciphertext of b. If b = 1, we pick a pair (mun, σun) ∈U Mun×Σun

uniformly at random. The pair (mun, σun) is the ciphertext of b in this case.

Dec Let (mun, σun) be a ciphertext. Using the secret key sk = KC
s , it suffices to

simulate UnConfirm or UnDeny to determine whether this pair is valid or not.
If the pair is valid the decrypted ciphertext is 0, else it is 1.

We prove here that PKE is IND-CPA secure provided that UnSign is invisible
under a lunchtime known-message attack.

Theorem 8.4.1. Assume that σun ← UnSign(mun,KC
s) is uniformly distributed for

any fixed key KC
s when mun is uniformly distributed. For any adversary A which wins

in an IND-CPA game against PKE with advantage Advind-cpa
PKE,A = ε > 0, there exists an

invisibility distinguisher D under a lunchtime known message attack against UnSign
with advantage Advinv-lkma

UnSign,D = ε′ = ε.

Proof. At the beginning of the invisibility game, D receives a challenged pair of
key (KC

p ,KC
s) and playing the role of the challenger in the IND-CPA game forwards

the same key pair to A. After a given time, A will trivially send the two bits

— 171 —

8. Generalized Chaum’s Designated Confirmer Signature

0, 1 to D. After a lunchtime, D receives two challenged messages m0
un, m1

un with a
signature σun. D sends the challenged pair (m0

un, σun) to A. Note that this challenge
is perfectly simulated. Then, A answers a bit b. This bit b is also the answer of D
to its challenger. Thus, the advantage ε′ of D satisfies ε′ = ε.

— 172 —

Chapter 9
Conclusion and Future Work

In this thesis, we have mainly investigated how to design short undeniable signature
schemes and developed a scheme having a fully scalable signature size depending
on the security level. To achieve this, we introduced a very general framework
based on group homomorphisms as well as some computational problems related to
the interpolation of a set of points by a group homomorphism. Additionally, this
setting contributes to present a unified view of different well-known computational
problems.

Using the above techniques, we have proposed a generic scheme called MOVA
which generalizes the Chaum’s undeniable signature scheme. By considering group
homomorphisms with a small range group and scaling the domain group with respect
to the adversary’s complexity, we can naturally achieve very short signatures. As
far as we know, this is the first signature scheme for which signatures of less than 80
bits can be considered. From our point of view, this represents the most important
contribution of this thesis.

As further results, we mention our 2-move confirmation and denial protocols
which reach the minimal number of moves for interactive verification protocols.
Possible concrete instantiations of MOVA scheme have been studied with a strong
focus on the group characters of order 2, 3, and 4. We also analyzed algorithmic
aspects related to the computation of characters as well as other group homomor-
phisms showing that Legendre symbol offers the most efficient signature generation.
According to the specific properties of the MOVA scheme and in particular the sig-
nature size, we examined some potential applications for which MOVA offers strong
advantage over other cryptographic schemes. In a more thorough way, we studied an
SMS lottery application where receipts confirming tickets registration are based on
a MOVA signature. In a closely related field, we revisited the Chaum’s designated
confirmer signature and provided a formal security proof on a generalized version.

Besides the above contributions, this work gives rise to some further possible

9. Conclusion and Future Work

investigations and some new open questions. We believe that the interpolation
of group homomorphisms should deserve additional attention in a wider part of
public-key cryptography. This tool may be very useful in order to express different
cryptographic results under a unified framework. Moreover, this new view might
contribute to the design of additional primitives of the public-key cryptography
such as classical (short) signature schemes or key-establishment protocols.

Apart from a possible application using two levels of secret, instantiations of
MOVA with characters greater than 2 do not provide clear advantages over the Leg-
endre symbols. We believe that the question remains partly open and a challenging
task would be to find additional motivations for using such characters.

— 174 —

Appendix A
Algebra

In this appendix, we recall some results of algebra which play an important role in
this thesis. An exhaustive treatment of the different subjects presented below would
be beyond the scope of this work. So, we restrict ourselves to the principal results.

A.1 The Structure of Finite Abelian Groups

One of the main achievements of group theory is the description of the structure of
finite Abelian groups. We give here the main statements related to this. Further
details about this development can be obtained in the book of Lang [91].

Definition A.1.1. Let p be a prime. A finite group is said to be a p-group if its
order is a power of p.

If G is a finite Abelian group and p is a prime, we denote by G(p) the subgroup
of all elements g ∈ G whose order is a power of p. We note that G(p) is a p-group.

Theorem A.1.2. Let G be a finite Abelian group and p1 < p2 < · · · < pn be the
sequences of all primes dividing the order of G. Then,

G ' G(p1)⊕G(p2)⊕ · · · ⊕G(pn).

Theorem A.1.3. Let H be a p-group. There exists a unique sequence of integers
0 < e1 ≤ e2 ≤ · · · ≤ ek such that

H ' Zpe1 ⊕ Zpe2 ⊕ · · · ⊕ Zpek .

Combining Theorem A.1.2 with Theorem A.1.3 leads to the structure of any
finite Abelian group.

A. Algebra

A.2 Integral Domains

The role of this section is to give some basic definitions and results related to integral
domains. For more details about the presented material, we refer the reader to
Chapter 1 of the book of Ireland and Rosen [79] (in particular pp. 8–12) and to
Chapter 2 of the book of Lang [91].

We recall first the definition of an integral domain as well as notions related to
the factorization.

Definition A.2.1. Let R denote a commutative ring with a unit element. We say
that R is an integral domain if there are non zero divisors in the ring, i.e.,

xy = 0⇒ x = 0 or y = 0

for all x, y ∈ R.

Definition A.2.2. Let a, b, u, p be elements of an integral domain R.

1. If b 6= 0, we say that b divides a if a = bc for some c ∈ R. We denote this fact
by b|a.

2. u is called a unit if u divides 1, i.e., if u is invertible.

3. a and b are said to be associates if a = bu for some unit u.

4. p is called irreducible if for any a, a|p implies that a is either a unit or an
associate of p.

5. A nonunit p is called a prime if p 6= 0 and for any a, b, p|ab implies that p|a
or p|b.

We define below some integral domains with special properties and provide im-
portant relations between them.

Definition A.2.3. Let R be an integral domain.

1. R is called a principal ideal domain (PID) if every ideal of R is principal, i.e.,
can be generated by a single element.

2. R is said to be an Euclidean domain if there is a function N : R\{0} −→ N
such that for all a, b ∈ R, b 6= 0, there exist c, d ∈ R with the property a = cb+d
and either d = 0 or N(d) < N(b).

3. R is said to be a unique factorization domain (UFD) if there exists a set S of
primes in R such that the following statements hold:

— 176 —

A.3. Lattices

(a) Every prime in R is associate to exactly one prime in S.

(b) Each element r of R can be written as a unique product of the form

r = u
∏
p∈S

pap ,

where u is a unit and the ap’s are some nonnegative integers.

Proposition A.2.4. The following assertions hold.

1. An Euclidean domain is a principal ideal domain.

2. A principal ideal domain is a unique factorization domain.

3. In a unique factorization domain an element is prime if and only if it is irre-
ducible.

We deduce the fundamental result stating that any element of an Euclidean
domain admits a unique factorization.

A.3 Lattices

This section provides some basic results related to lattices. More precisely, we recall
the definition of a lattice, the determinant of a lattice, Minkowski’s convex body
theorem which is fundamental in the theory of lattices and give an upper bound on
the discriminant of a lattice produced by the solutions of a linear congruence. The
following results were taken from the textbook of Cassels [34] and the PhD thesis
of Nguy˜̂en [115]. The former contains a thorough presentation on the lattice theory
and the latter provides nice algorithmic applications of lattices to the cryptography.

Definition A.3.1. A subset L of the space Rp is called a lattice if there exist some
linearly independent vectors v1, . . . , vn ∈ Rp over R such that

L = {x =
n∑

i=1

aivi | a1, . . . , an ∈ Z}.

The vectors v1, . . . , vn are called the basis of the lattice L and n is the dimension
of L.

An equivalent definition of a lattice consists in saying that L is a discrete sub-
group of (Rp, +). We note also that a basis of a lattice is not unique. From now on,
we only consider lattices of dimension p, i.e., of full dimension.

An important notion related to a lattice is the determinant.

— 177 —

A. Algebra

Definition A.3.2. Let L ⊂ Rp be a p-dimensional (full-dimensional) lattice with
basis vectors v1, . . . , vp ∈ Rp. The determinant of L is defined by

d(L) = | det(v1, . . . , vp)|,

where (v1, . . . , vp) denotes the p× p matrix whose ith column is the vector vi.

We now state a very remarkable theorem due to Minkowski.

Theorem A.3.3. (Minkowski’s convex body theorem) Let L ⊂ Rp be a lattice of
dimension p with determinant d(L). Let S be a measurable subset (with respect to
the Lebesgue measure µ) of Rp which is symmetric about 0, convex and such that

µ(S) > 2pd(L).

Then, S contains at least one point of L different of 0.

Finally, we present a technical result about solutions of a linear congruence and
the determinant of the lattice produced by them.

Lemma A.3.4. Let p, k be positive integers and ai ∈ Z for i = 1, . . . , p. The set L
composed of the solutions in Zp of the congruence

p∑
j=1

ajuj ≡ 0 (mod k)

is a lattice of determinant satisfying

d(L) ≤ k.

— 178 —

Bibliography

[1] Michel Abdalla and Bogdan Warinschi. On the Minimal Assumptions of Group
Signature Schemes. In Javier Lopez, Sihan Qing, and Eiji Okamoto, editors,
Information and Communications Security, ICICS ’04, volume 3269 of Lecture
Notes in Computer Science, pages 1–13. Springer-Verlag, 2004.

[2] Advanced Encryption Standard, Federal Information Processing Standards
Publication 197. U.S. Department of Commerce, National Institute of Stan-
dards and Technology, 2001.

[3] Ross J. Anderson, Serge Vaudenay, Bart Preneel, and Kaisa Nyberg. The
Newton Channel. In Ross J. Anderson, editor, Information Hiding: 1st Inter-
national Workshop, volume 1174 of Lecture Notes in Computer Science, pages
151–156. Springer-Verlag, 1996.

[4] ANSI X9.30. Public Key Cryptography for the Financial Services Industry:
Part 1: The Digital Signature Algorithm (DSA). American National Standard
Institute. American Bankers Association, 1997.

[5] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario
Szegedy. Proof Verification and Hardness of Approximation Problems. In 33rd
Annual IEEE Symposium on Foundations of Computer Science, FOCS ’92,
pages 14–23. IEEE Computer Society, 1992.

[6] Gildas Avoine, Jean Monnerat, and Thomas Peyrin. Advances in Alternative
Non-adjacent Form Representations. In Anne Canteaut and Kapaleeswaran
Viswanathan, editors, Progress in Cryptology – INDOCRYPT ’04, volume
3348 of Lecture Notes in Computer Science, pages 260–274. Springer-Verlag,
2004.

— 179 —

Bibliography

[7] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking
Computations in Polylogarithmic Time. In 23rd Annual ACM Symposium on
Theory of Computing, STOC ’91, pages 21–31. ACM Press, 1991.

[8] Thomas Baignères, Pascal Junod, Yi Lu, Jean Monnerat, and Serge Vaudenay.
A Classical Introduction to Cryptography – Exercise Book. Springer-Verlag,
2006.

[9] Boaz Barak. How to Go Beyond the Black-Box Simulation Barrier. In 42nd
Annual IEEE Symposium on Foundations of Computer Science, FOCS ’01,
pages 106–115. IEEE Computer Society, 2001.

[10] Boaz Barak, Yehuda Lindell, and Salil P. Vadhan. Lower Bounds for Non-
Black-Box Zero Knowledge. In 44th Annual IEEE Symposium on Foundations
of Computer Science, FOCS ’03, pages 384–393. IEEE Computer Society,
2003.

[11] Boaz Barak, Yehuda Lindell, and Salil P. Vadhan. Lower Bounds for Non-
Black-Box Zero Knowledge. Cryptology ePrint Archive, Report 2004/226,
2004. http://eprint.iacr.org/. Full version of [10].

[12] Mihir Bellare, Alexandra Boldyreva, and Adriana Palacio. An Uninstantiable
Random-Oracle-Model Scheme for a Hybrid-Encryption Problem. In Chris-
tian Cachin and Jan Camenisch, editors, Advances in Cryptology – EURO-
CRYPT ’04, volume 3027 of Lecture Notes in Computer Science, pages 171–
188. Springer-Verlag, 2004.

[13] Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: A
Paradigm for Designing Efficient Protocols. In 1st ACM Conference on Com-
puter and Communications Security, pages 62–73. ACM Press, 1993.

[14] Côme Berbain, Henri Gilbert, and Jacques Patarin. QUAD: A Practical
Stream Cipher with Provable Security. In Serge Vaudenay, editor, Advances in
Cryptology – EUROCRYPT ’06, volume 4004 of Lecture Notes in Computer
Science, pages 109–128. Springer-Verlag, 2006.

[15] Ingrid Biehl, Sacher Paulus, and Tsuyoshi Takagi. Efficient Undeniable Signa-
ture Schemes Based on Ideal Arithmetic in Quadratic Orders. Design, Codes
and Cryptography, 31(2):99–123, 2004.

[16] Lenore Blum, Manuel Blum, and Michael Shub. Comparison of Two Pseudo-
Random Number Generators. In David Chaum, Ronald L. Rivest, and
Alan T. Sherman, editors, Advances in Cryptology – CRYPTO ’82, pages
61–78. Plenum Press, 1983.

— 180 —

Bibliography

[17] Lenore Blum, Manuel Blum, and Michael Shub. A Simple Unpredictable
Pseudo-Random Number Generator. SIAM Journal on Computing, 15(2):364–
383, 1986. Full version of [16].

[18] Manuel Blum, Paul Feldman, and Silvio Micali. Non-Interactive Zero-
Knowledge and Its Applications. In 20th Annual ACM Symposium on Theory
of Computing, STOC ’88, pages 103–112. ACM Press, 1988.

[19] Dan Boneh. The Decision Diffie-Hellman Problem. In Joe P. Buhler, edi-
tor, Algorithmic Number Theory, ANTS-III, volume 1423 of Lecture Notes in
Computer Science, pages 48–63. Springer-Verlag, 1998.

[20] Dan Boneh and Matt Franklin. Identity-Based Encryption from the Weil
Pairing. In Joe Kilian, editor, Advances in Cryptology – CRYPTO ’01, volume
2139 of Lecture Notes in Computer Science, pages 213–229. Springer-Verlag,
2001.

[21] Dan Boneh and Matthew Franklin. Identity-Based Encryption from the Weil
Pairing. SIAM Journal on Computing, 32(3):586–615, 2003. Full version
of [20].

[22] Dan Boneh, Ben Lynn, and Hovav Shacham. Short Signatures from the Weil
Pairing. In Colin Boyd, editor, Advances in Cryptology – ASIACRYPT ’01,
volume 2248 of Lecture Notes in Computer Science, pages 514–532. Springer-
Verlag, 2001.

[23] Joan Boyar, David Chaum, Ivan Damg̊ard, and Torben P. Pedersen. Con-
vertible Undeniable Signatures. In Alfred J. Menezes and Scott A. Vanstone,
editors, Advances in Cryptology – CRYPTO ’90, volume 537 of Lecture Notes
in Computer Science, pages 189–205. Springer-Verlag, 1991.

[24] Joan Boyar, Stuart A. Kurtz, and Mark W. Krentel. A Discrete Logarithm
Implementation of Perfect Zero-Knowledge Blobs. Journal of Cryptology,
2(2):63–76, 1990.

[25] Colin Boyd and Ernest Foo. Off-Line Fair Payment Protocols Using Convert-
ible Signatures. In Kazuo Ohta and Dingyi Pei, editors, Advances in Cryptol-
ogy – ASIACRYPT ’98, volume 1514 of Lecture Notes in Computer Science,
pages 271–285. Springer-Verlag, 1998.

[26] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum Disclosure
Proofs of Knowledge. Journal of Computer and System Sciences, 37(2):156–
189, 1988.

— 181 —

Bibliography

[27] Richard P. Brent. Factorization of the Tenth Fermat Number. Mathematics
of Computation, 68(225):429–451, 1999.

[28] Emmanuel Bresson, Dario Catalano, and David Pointcheval. A Simple Public-
Key Cryptosystem with a Double Trapdoor Decryption Mechanism and Its
Applications. In Chi Sung Laih, editor, Advances in Cryptology – ASI-
ACRYPT ’03, volume 2894 of Lecture Notes in Computer Science, pages 37–
54. Springer-Verlag, 2003.

[29] Lynne M. Butler. A Unimodality Result in the Enumeration of Subgroups of
a Finite Abelian Group. Proceedings of the American Mathematical Society,
101(4):771–775, 1987.

[30] Jan Camenisch and Markus Michels. Confirmer Signature Schemes Secure
against Adaptive Adversaries. In Bart Preneel, editor, Advances in Cryptology
– EUROCRYPT ’00, volume 1807 of Lecture Notes in Computer Science, pages
243–258. Springer-Verlag, 2000.

[31] Jan Camenisch and Victor Shoup. Practical Verifiable Encryption and Decryp-
tion of Discrete Logarithms. In Dan Boneh, editor, Advances in Cryptology
– CRYPTO ’03, volume 2729 of Lecture Notes in Computer Science, pages
126–144. Springer-Verlag, 2003.

[32] Ran Canetti, Oded Goldreich, and Shai Halevi. The Random Oracle Method-
ology, Revisited. In 30th Annual ACM Symposium on Theory of Computing,
STOC ’98, pages 209–218. ACM Press, 1998.

[33] Ran Canetti, Oded Goldreich, and Shai Halevi. The Random Oracle Method-
ology, Revisited. Journal of the ACM, 51(4):557–594, 2004. Full version of [32].

[34] John W. S. Cassels. An Introduction to the Geometry of Numbers. Classics in
Mathematics. Springer-Verlag, 1997.

[35] Stefania Cavallar, Bruce Dodson, Arjen K. Lenstra, Walter Lioen, Peter L.
Montgomery, Brian Murphy, Herman te Riele, Karen Aardal, Jeff Gilchrist,
Gérard Guillerm, Paul Leyland, Joël Marchand, François Morain, Alec Muf-
fett, Chris Putnam, Craig Putnam, and Paul Zimmermann. Factorization of
a 512-Bit RSA Modulus. In Bart Preneel, editor, Advances in Cryptology –
EUROCRYPT ’00, volume 1807 of Lecture Notes in Computer Science, pages
1–18. Springer-Verlag, 2000.

[36] David Chaum. Zero-Knowledge Undeniable Signatures. In Ivan Damg̊ard,
editor, Advances in Cryptology – EUROCRYPT ’90, volume 473 of Lecture
Notes in Computer Science, pages 458–464. Springer-Verlag, 1990.

— 182 —

Bibliography

[37] David Chaum. Some Weaknesses of “Weaknesses of Undeniable Signature
Schemes”. In Donald W. Davies, editor, Advances in Cryptology – EURO-
CRYPT ’91, volume 547 of Lecture Notes in Computer Science, pages 554–556.
Springer-Verlag, 1991.

[38] David Chaum. Designated Confirmer Signatures. In Alfredo De Santis, editor,
Advances in Cryptology – EUROCRYPT ’94, volume 950 of Lecture Notes in
Computer Science, pages 86–91. Springer-Verlag, 1995.

[39] David Chaum and Torben P. Pedersen. Wallet Databases with Observers. In
Ernest F. Brickell, editor, Advances in Cryptology – CRYPTO ’92, volume 740
of Lecture Notes in Computer Science, pages 89–105. Springer-Verlag, 1993.

[40] David Chaum and Hans van Antwerpen. Undeniable Signatures. In Gilles
Brassard, editor, Advances in Cryptology – CRYPTO ’89, volume 435 of Lec-
ture Notes in Computer Science, pages 212–217. Springer-Verlag, 1990.

[41] David Chaum, Eugène van Heijst, and Birgit Pfitzman. Cryptographically
Strong Undeniable Signatures, Unconditionally Secure for the Signer. In Joan
Feigenbaum, editor, Advances in Cryptology – CRYPTO ’91, volume 576 of
Lecture Notes in Computer Science, pages 470–484. Springer-Verlag, 1992.

[42] Henri Cohen. A Course in Computational Algebraic Number Theory, volume
138 of Graduate Texts in Mathematics. Springer-Verlag, 2000.

[43] Jean-Sébastien Coron. On the Exact Security of Full Domain Hash. In Mi-
hir Bellare, editor, Advances in Cryptology – CRYPTO ’00, volume 1880 of
Lecture Notes in Computer Science, pages 229–235. Springer-Verlag, 2000.

[44] Nicolas T. Courtois, Matthieu Finiasz, and Nicolas Sendrier. How to Achieve
a McEliece-Based Digital Signature Scheme. In Colin Boyd, editor, Advances
in Cryptology – ASIACRYPT ’01, volume 2248 of Lecture Notes in Computer
Science, pages 157–174. Springer-Verlag, 2001.

[45] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES – The
Advanced Encryption Standard. Springer-Verlag, 2002.

[46] Ivan Damg̊ard. Efficient Concurrent Zero-Knowledge in the Auxiliary String
Model. In Bart Preneel, editor, Advances in Cryptology – EUROCRYPT ’00,
volume 1807 of Lecture Notes in Computer Science, pages 418–430. Springer-
Verlag, 2000.

[47] Ivan Damg̊ard and Gudmund S. Frandsen. Efficient Algorithms for GCD and
Cubic Residuosity in the Ring of Eisenstein Integers. In Andrzej Lingas and

— 183 —

Bibliography

Bengt J. Nilsson, editors, Fundamentals of Computation Theory, FCT ’03,
volume 2751 of Lecture Notes in Computer Science, pages 109–117. Springer-
Verlag, 2003.

[48] Ivan Damg̊ard and Gudmund S. Frandsen. Efficient Algorithms for the gcd
and Cubic Residuosity in the Ring of Eisenstein Integer. Journal of Symbolic
Computation, 39(6):643–652, 2005. Full version of [47].

[49] Ivan Damg̊ard and Torben P. Pedersen. New Convertible Undeniable Signature
Schemes. In Ueli Maurer, editor, Advances in Cryptology – EUROCRYPT ’96,
volume 1070 of Lecture Notes in Computer Science, pages 372–386. Springer-
Verlag, 1996.

[50] Alfredo De Santis, Giovanni Di Crescenzo, and Giuseppe Persiano. Neces-
sary and Sufficient Assumptions for Non-interactive Zero-Knowledge Proofs
of Knowledge for All NP Relations. In Ugo Montanari, José D. P. Rolim,
and Emo Welzl, editors, Automata, Languages and Programming: 27th Inter-
national Colloquium, ICALP ’00, volume 1853 of Lecture Notes in Computer
Science, pages 451–462. Springer-Verlag, 2000.

[51] Yvo Desmedt and Moti Yung. Weaknesses of Undeniable Signature Schemes.
In Donald W. Davies, editor, Advances in Cryptology – EUROCRYPT ’91,
volume 547 of Lecture Notes in Computer Science, pages 205–220. Springer-
Verlag, 1991.

[52] Giovanni Di Crescenzo. Equivocable and Extractable Commitment Schemes.
In Stelvio Cimato, Clemente Galdi, and Giuseppe Persiano, editors, Secu-
rity in Communications Network, SCN ’02, volume 2576 of Lecture Notes in
Computer Science, pages 74–87. Springer-Verlag, 2003.

[53] Whitfield Diffie and Martin E. Hellman. New Directions in Cryptography.
IEEE Transactions on Information Theory, 22(6):644–654, 1976.

[54] Digital Signature Standard (DSS), Federal Information Processing Standards
Publication 186-2. U.S. Department of Commerce, National Institute of Stan-
dards and Technology, 2000.

[55] Cynthia Dwork and Amit Sahai. Concurrent Zero-Knowledge: Reducing the
Need for Timing Constraints. In Hugo Krawczyk, editor, Advances in Cryp-
tology – CRYPTO ’98, volume 1462 of Lecture Notes in Computer Science,
pages 442–458. Springer-Verlag, 1998.

[56] Taher ElGamal. A Public Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms. In George R. Blakley and David Chaum, editors,

— 184 —

Bibliography

Advances in Cryptology – CRYPTO ’84, volume 196 of Lecture Notes in Com-
puter Science, pages 10–18. Springer-Verlag, 1985.

[57] William Feller. An Introduction to Probability Theory and Its Applications,
Volume I, 3rd edition. Wiley Series in Probability and Mathematical Statistics.
John Wiley Sons, 1968.

[58] Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions to
Identification and Signature Problems. In Andrew M. Odlyzko, editor, Ad-
vances in Cryptology – CRYPTO ’86, volume 263 of Lecture Notes in Com-
puter Science, pages 186–194. Springer-Verlag, 1987.

[59] Matthieu Finiasz. Nouvelles constructions utilisant des codes correcteurs
d’erreurs en cryptographie à clef publique. PhD thesis, École Polytechnique,
France, 2004.

[60] Marc Fischlin. Trapdoor Commitment Schemes and Their Applications. PhD
thesis, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany,
2001.

[61] Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. Interactive Bi-Proof
Sytems and Undeniable Signature Schemes. In Donald W. Davies, editor,
Advances in Cryptology – EUROCRYPT ’91, volume 547 of Lecture Notes in
Computer Science, pages 243–256. Springer-Verlag, 1991.

[62] Steven D. Galbraith and Wenbo Mao. Invisibility and Anonymity of Unde-
niable and Confirmer Signatures. In Marc Joye, editor, Topics in Cryptology
– CT–RSA ’03, volume 2612 of Lecture Notes in Computer Science, pages
80–97. Springer-Verlag, 2003.

[63] Steven D. Galbraith, Wenbo Mao, and Kenneth G. Paterson. RSA-Based
Undeniable Signatures for General Moduli. In Bart Preneel, editor, Topics in
Cryptology – CT–RSA ’02, volume 2271 of Lecture Notes in Computer Science,
pages 200–217. Springer-Verlag, 2002.

[64] Sachin Garg. How to Optimize C/C++ Source – Performance Programming,
2002. http://bdn.borland.com/article/0,1410,28278,00.html.

[65] Rosario Gennaro, Hugo Krawczyk, and Tal Rabin. RSA-Based Undeniable Sig-
natures. In Burton S. Kaliski, editor, Advances in Cryptology – CRYPTO ’97,
volume 1294 of Lecture Notes in Computer Science, pages 132–149. Springer-
Verlag, 1997.

— 185 —

Bibliography

[66] Rosario Gennaro, Hugo Krawczyk, and Tal Rabin. RSA-Based Undeniable
Signatures. Journal of Cryptology, 13(4):397–416, 2000. Full version of [65].

[67] Craig Gentry, David Molnar, and Zulfikar Ramzan. Efficient Designated
Confirmer Signatures Without Random Oracles or General Zero-Knowledge
Proofs. In Bimal Roy, editor, Advances in Cryptology – ASIACRYPT ’05,
volume 3788 of Lecture Notes in Computer Science, pages 662–681. Springer-
Verlag, 2005.

[68] The GNU Multiple Precision Arithmetic Library.
http://www.swox.com/gmp/.

[69] Oded Goldreich. Foundations of Cryptography, Volume I Basic Tools. Cam-
bridge University Press, 2001.

[70] Oded Goldreich and Hugo Krawczyk. On the Composition of Zero-Knowledge
Proof Systems. In Michael S. Paterson, editor, Automata, Languages and Pro-
gramming: 17th International Colloquium, ICALP ’90, volume 443 of Lecture
Notes in Computer Science, pages 268–282. Springer-Verlag, 1990.

[71] Oded Goldreich and Hugo Krawczyk. On the Composition of Zero-Knowledge
Proof Systems. SIAM Journal on Computing, 25(1):169–192, 1996. Full ver-
sion of [70].

[72] Shafi Goldwasser and Silvio Micali. Probabilistic Encryption & How To Play
Mental Poker Keeping Secret All Partial Information. In 14th Annual ACM
Symposium on Theory of Computing, STOC ’82, pages 365–377. ACM Press,
1982.

[73] Shafi Goldwasser and Silvio Micali. Probabilistic Encryption. Journal of
Computer and System Sciences, 28(2):270–299, 1984.

[74] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge Com-
plexity of Interactive Proof Systems. In 17th Annual ACM Symposium on
Theory of Computing, STOC ’85, pages 291–304. ACM Press, 1985.

[75] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge Com-
plexity of Interactive Proof Systems. SIAM Journal on Computing, 18(1):186–
208, 1989. Full version of [74].

[76] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A Digital Signature
Scheme Secure Against Adaptive Chosen-Message Attacks. SIAM Journal on
Computing, 17(2):281–308, 1988.

— 186 —

Bibliography

[77] Shafi Goldwasser and Erez Waisbard. Transformation of Digital Signature
Schemes into Designated Confirmer Signatures Schemes. In Moni Naor, editor,
Theory of Cryptography, TCC ’04, volume 2951 of Lecture Notes in Computer
Science, pages 77–100. Springer-Verlag, 2004.

[78] Russell Impagliazzo and Steven Rudich. Limits on the Provable Consequences
of One-way Permutations. In 21st Annual ACM Symposium on Theory of
Computing, STOC ’89, pages 44–61. ACM Press, 1989.

[79] Kenneth Ireland and Michael Rosen. A Classical Introduction to Modern
Number Theory: 2nd edition, volume 84 of Graduate Texts in Mathematics.
Springer-Verlag, 1990.

[80] Markus Jakobsson. Blackmailing using Undeniable Signatures. In Alfredo
De Santis, editor, Advances in Cryptology – EUROCRYPT ’94, volume 950 of
Lecture Notes in Computer Science, pages 425–427. Springer-Verlag, 1995.

[81] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated Verifier
Proofs and Their Applications. In Ueli Maurer, editor, Advances in Cryptology
– EUROCRYPT ’96, volume 1070 of Lecture Notes in Computer Science, pages
143–154. Springer-Verlag, 1996.

[82] Pascal Junod. On the Optimality of Linear, Differential, and Sequential Distin-
guishers. In Eli Biham, editor, Advances in Cryptology – EUROCRYPT ’03,
volume 2656 of Lecture Notes in Computer Science, pages 17–32. Springer-
Verlag, 2003.

[83] Donald E. Knuth and Luis Trabb Pardo. Analysis of a Simple Factorization
Algorithm. Theoretical Computer Science, 3(3):321–348, 1976.

[84] Neal Koblitz and Alfred Menezes. Another Look at “Provable Security”. Cryp-
tology ePrint Archive, Report 2004/152, 2004. http://eprint.iacr.org/.

[85] Hugo Krawczyk and Tal Rabin. Chameleon Signatures. In Network and Dis-
tributed System Security Symposium, NDSS ’00, pages 143–154. The Internet
Society, 2000.

[86] Kaoru Kurosawa and Swee-Huay Heng. 3-Move Undeniable Signature Scheme.
In Ronald Cramer, editor, Advances in Cryptology – EUROCRYPT ’05, vol-
ume 3494 of Lecture Notes in Computer Science, pages 181–197. Springer-
Verlag, 2005.

[87] Fabien Laguillaumie. Signatures à Vérification Contrôlée Basées sur des Ap-
plications Bilinéaires : Conception et Analyse de Sécurité. PhD thesis, Uni-
versité de Caen Basse-Normandie, France, 2005.

— 187 —

Bibliography

[88] Fabien Laguillaumie and Damien Vergnaud. Short Undeniable Signatures
Without Random Oracles: the Missing Link. In Subhamoy Maitra, C. E.
Veni Madhavan, and Ramarathnam Venkatesan, editors, Progress in Cryptol-
ogy – INDOCRYPT ’05, volume 3797 of Lecture Notes in Computer Science,
pages 283–296. Springer-Verlag, 2005.

[89] Fabien Laguillaumie and Damien Vergnaud. Time-Selective Convertible Un-
deniable Signatures. In Alfred J. Menezes, editor, Topics in Cryptology – CT–
RSA ’05, volume 3376 of Lecture Notes in Computer Science, pages 154–171.
Springer-Verlag, 2005.

[90] Peter Landrock. A New Concept in Protocols: Verifiable Computational Del-
egation. In Bruce Christianson, Bruno Crispo, William S. Harbison, and
Michael Roe, editors, Security Protocols: 6th International Workshop, volume
1550 of Lecture Notes in Computer Science, pages 137–145. Springer-Verlag,
1998.

[91] Serge Lang. Algebra, revised 3rd edition, volume 211 of Graduate Texts in
Mathematics. Springer-Verlag, 2002.

[92] Michael. E. Lee. Optimization of Computer Programs in C.
http://www.prism.uvsq.fr/~cedb/local copies/lee.html.

[93] Vincent Lefèvre. Entiers de Gauss (sujet d’étude XM’), 1993.
http://www.vinc17.org/math/index.fr.html.

[94] Franz Lemmermeyer. Reciprocity Laws: From Euler to Eisenstein. Springer
Monographs in Mathematics. Springer-Verlag, 2000.

[95] Arjen K. Lenstra and Hendrik W. Lenstra, Jr. The Development of the Number
Field Sieve, volume 1554 of Lecture Notes in Mathematics. Springer-Verlag,
1993.

[96] Hendrik W. Lenstra, Jr. Factoring Integers with Elliptic Curves. Annals of
Mathematics, 126:649–673, 1984.

[97] Franck Leprévost, Jean Monnerat, Sébastien Varrette, and Serge Vaude-
nay. Generating Anomalous Elliptic Curves. Information Processing Letters,
93(5):225–230, 2005.

[98] Benôıt Libert and Jean-Jacques Quisquater. Identity Based Undeniable Sig-
natures. In Tatsuaki Okamoto, editor, Topics in Cryptology – CT–RSA ’04,
volume 2964 of Lecture Notes in Computer Science, pages 112–125. Springer-
Verlag, 2004.

— 188 —

Bibliography

[99] Scott C. Lindhurst. Computing Roots in Finite Fields and Groups with a Jaunt
through Sums of Digits. PhD thesis, University of Wisconsin – Madison, USA,
1997.

[100] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook
of Applied Cryptography. CRC Press, 1996.

[101] Ralph C. Merkle. Secure Communications Over Insecure Channels. Commu-
nications of the ACM, 21(4):294–299, 1978.

[102] Shawna Meyer Eikenberry and Sorenson Jonathan. P. Efficient Algorithms for
Computing the Jacobi Symbol. Journal of Symbolic Computation, 26(4):509–
523, 1998.

[103] Markus Michels, Holger Petersen, and Patrick Horster. Breaking and Repair-
ing a Convertible Undeniable Signature. In 3rd ACM Conference on Computer
and Communications Security, pages 148–152. ACM Press, 1996.

[104] Markus Michels and Markus Stadler. Efficient Convertible Undeniable Signa-
ture Schemes. In Selected Areas in Cryptography – SAC ’97, pages 231–243,
1997.

[105] Markus Michels and Markus Stadler. Generic Constructions for Secure and
Efficient Confirmer Signatures Schemes. In Kaisa Nyberg, editor, Advances in
Cryptology – EUROCRYPT ’98, volume 1403 of Lecture Notes in Computer
Science, pages 406–421. Springer-Verlag, 1998.

[106] Jean Monnerat, Yvonne Anne Oswald, and Serge Vaudenay. Optimization of
the MOVA Undeniable Signature Scheme. In Ed Dawson and Serge Vaudenay,
editors, Progress in Cryptology – MYCRYPT ’05, volume 3715 of Lecture
Notes in Computer Science, pages 196–209. Springer-Verlag, 2005.

[107] Jean Monnerat and Serge Vaudenay. Generic Homomorphic Undeniable Sig-
natures. In Pil Joong Lee, editor, Advances in Cryptology – ASIACRYPT ’04,
volume 3329 of Lecture Notes in Computer Science, pages 354–371. Springer-
Verlag, 2004.

[108] Jean Monnerat and Serge Vaudenay. On Some Weak Extensions of AES and
BES. In Javier Lopez, Sihan Qing, and Eiji Okamoto, editors, Information
and Communications Security, ICICS ’04, volume 3269 of Lecture Notes in
Computer Science, pages 414–426. Springer-Verlag, 2004.

[109] Jean Monnerat and Serge Vaudenay. Undeniable Signatures Based on Char-
acters: How to Sign with One Bit. In Feng Bao, Robert Deng, and Jianying

— 189 —

Bibliography

Zhou, editors, Public Key Cryptography – PKC ’04, volume 2947 of Lecture
Notes in Computer Science, pages 69–85. Springer-Verlag, 2004.

[110] Jean Monnerat and Serge Vaudenay. Chaum’s Designated Confirmer Signa-
ture Revisited. In Jianying Zhou, Javier Lopez, Robert H. Deng, and Feng
Bao, editors, Information Security, ISC ’05, volume 3650 of Lecture Notes in
Computer Science, pages 164–178. Springer-Verlag, 2005.

[111] Jean Monnerat and Serge Vaudenay. Short 2-Move Undeniable Signatures. In
Phong Q. Nguy˜̂en, editor, VIETCRYPT ’06, volume 4341 of Lecture Notes in
Computer Science, pages 19–36. Springer-Verlag, 2006.

[112] Jean Monnerat and Serge Vaudenay. Method to Generate, Verify and Deny
an Undeniable Signature. PCT/EP2005/001335, February 13, 2004.

[113] Sean Murphy and Matthew J. B. Robshaw. Essential Algebraic Structure
within the AES. In Moti Yung, editor, Advances in Cryptology – CRYPTO ’02,
volume 2442 of Lecture Notes in Computer Science, pages 1–16. Springer-
Verlag, 2002.

[114] Melvyn B. Nathanson. Elementary Methods in Number Theory, volume 195
of Graduate Texts in Mathematics. Springer-Verlag, 2000.

[115] Phong Q. Nguy˜̂en. La Géométrie des Nombres en Cryptologie. PhD thesis,
Université Paris 7 – Denis Diderot, France, 1999.

[116] Wakaha Ogata, Kaoru Kurosawa, and Swee-Huay Heng. The Security of
the FDH Variant of Chaum’s Undeniable Signature Scheme. In Serge Vau-
denay, editor, Public Key Cryptography – PKC ’05, volume 3386 of Lec-
ture Notes in Computer Science, pages 328–345. Springer-Verlag, 2005. Ex-
tended version available on: Cryptology ePrint Archive, Report 2004/290,
http://eprint.iacr.org/.

[117] Tatsuaki Okamoto. A Fast Signature Scheme Based on Congruential Poly-
nomial Operations. IEEE Transactions on Information Theory, 36(1):47–53,
1990.

[118] Tatsuaki Okamoto. Designated Confirmer Signatures and Public-key En-
cryption are Equivalent. In Yvo Desmedt, editor, Advances in Cryptology
– CRYPTO ’94, volume 839 of Lecture Notes in Computer Science, pages
61–74. Springer-Verlag, 1994.

[119] Tatsuaki Okamoto and David Pointcheval. The Gap-Problems: A New Class
of Problems for the Security of Cryptographic Schemes. In Kwangjo Kim,

— 190 —

Bibliography

editor, Public Key Cryptography – PKC ’01, volume 1992 of Lecture Notes in
Computer Science, pages 104–118. Springer-Verlag, 2001.

[120] Tatsuaki Okamoto and Jacques Stern. Almost Uniform Density of Power
Residues and the Provable Security of ESIGN. In Chi Sung Laih, editor,
Advances in Cryptology – ASIACRYPT ’03, volume 2894 of Lecture Notes in
Computer Science, pages 287–301. Springer-Verlag, 2003.

[121] Florin Oswald. SMS Lottery – An Application for MOVA. Master’s thesis,
EPFL, LASEC, Lausanne, Switzerland, 2006.

[122] Yvonne Anne Oswald. Generic Homomorphic Undeniable Signature Scheme:
Optimizations. Semester project, EPFL, LASEC, Lausanne, Switzerland,
2005.

[123] Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree Resid-
uosity Classes. In Jacques Stern, editor, Advances in Cryptology – EURO-
CRYPT ’99, volume 1592 of Lecture Notes in Computer Science, pages 223–
238. Springer-Verlag, 1999.

[124] Sylvain Pasini. Secure Communications over Insecure Channels Using an Au-
thenticated Channel. Master’s thesis, EPFL, LASEC, Lausanne, Switzerland,
2005. http://lasecwww.epfl.ch/.

[125] Rafael Pass. On Deniability in the Common Reference String and Random
Oracle Model. In Dan Boneh, editor, Advances in Cryptology – CRYPTO ’03,
volume 2729 of Lecture Notes in Computer Science, pages 316–337. Springer-
Verlag, 2003.

[126] Torben P. Pedersen. Distributed Provers with Applications to Undeniable
Signatures. In Donald W. Davies, editor, Advances in Cryptology – EURO-
CRYPT ’91, volume 547 of Lecture Notes in Computer Science, pages 221–242.
Springer-Verlag, 1991.

[127] Duong Hieu Phan and David Pointcheval. Chosen-Ciphertext Security with-
out Redundancy. In Chi Sung Laih, editor, Advances in Cryptology – ASI-
ACRYPT ’03, volume 2894 of Lecture Notes in Computer Science, pages 1–18.
Springer-Verlag, 2003.

[128] David Pointcheval. Self-Scrambling Anonymizers. In Yair Frankel, editor,
Financial Cryptography, FC ’00, volume 1962 of Lecture Notes in Computer
Science, pages 259–275. Springer-Verlag, 2001.

— 191 —

Bibliography

[129] David Pointcheval and Jacques Stern. Security Arguments for Digital Signa-
tures and Blind Signatures. Journal of Cryptology, 13(3):361–396, 2000.

[130] Omer Reingold, Luca Trevisan, and Salil Vadhan. Notions of Reducibility
between Cryptographic Primitives. In Moni Naor, editor, Theory of Cryptog-
raphy, TCC ’04, volume 2951 of Lecture Notes in Computer Science, pages
1–20. Springer-Verlag, 2004.

[131] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A Method for
Obtaining Digital Signatures and Public-key Cryptosystems. Communications
of the ACM, 21(2):120–126, 1978.

[132] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to Leak a Secret. In
Colin Boyd, editor, Advances in Cryptology – ASIACRYPT ’01, volume 2248
of Lecture Notes in Computer Science, pages 552–565. Springer-Verlag, 2001.

[133] John Rompel. One-Way Functions are Necessary and Sufficient for Secure
Signatures. In 22nd Annual ACM Symposium on Theory of Computing,
STOC ’90, pages 387–394. ACM Press, 1990.

[134] Kouichi Sakurai and Shingo Miyazaki. An Anonymous Electronic Bidding
Protocol Based on a New Convertible Group Signature Scheme. In Ed Dawson,
Andrew Clark, and Colin Boyd, editors, Information Security and Privacy,
ACISP ’00, volume 1841 of Lecture Notes in Computer Science, pages 385–
399. Springer-Verlag, 2000.

[135] Renate Scheidler. A Public-Key Cryptosystem Using Purely Cubic Fields.
Journal of Cryptology, 11(2):109–124, 1998.

[136] Renate Scheidler and Hugh C. Williams. A Public-Key Cryptosystem Utilizing
Cyclotomic Fields. Design, Codes and Cryptography, 6(2):117–131, 1995.

[137] Claus-Peter Schnorr. Efficient Signature Generation by Smart Cards. Journal
of Cryptology, 4(3):161–174, 1991.

[138] Victor Shoup. Sequences of Games: A Tool for Taming Complexity
in Security Proofs. Cryptology ePrint Archive, Report 2004/332, 2004.
http://eprint.iacr.org/.

[139] Eric V. Slud. Distribution Inequalities for the Binomial Law. The Annals of
Probability, 5(3):404–412, 1977.

[140] Nigel P. Smart. The Discrete Logarithm Problem on Elliptic Curves of Trace
One. Journal of Cryptology, 12(3):193–196, 1999.

— 192 —

Bibliography

[141] Victor Stinner. frequence cpu.c, 2003. http://www.haypocal.com/.

[142] Alan M. Turing. On Computable Numbers with an Application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society,
42(2):230–265, 1936.

[143] Serge Vaudenay. A Classical Introduction to Cryptography: Applications for
Communications Security. Springer-Verlag, 2006.

[144] André Weilert. (1 + i)-ary GCD Computation in Z[i] is an Analogue to the
Binary GCD Algorithm. Journal of Symbolic Computation, 30(5):605–617,
2000.

[145] André Weilert. Asymptotically Fast GCD Computation in Z[i]. In Wieb
Bosma, editor, Algorithmic Number Theory, ANTS-IV, volume 1838 of Lecture
Notes in Computer Science, pages 595–613. Springer-Verlag, 2000.

[146] André Weilert. Fast Computation of the Biquadratic Residue Symbol. Journal
of Number Theory, 96(1):133–151, 2002.

[147] Hugh C. Williams and C. R. Zarnke. Some Algorithms for Solving a Cubic
Congruence Modulo p. Utilitas Mathematica, 6:285–306, 1974.

— 193 —

Curriculum Vitæ

Work Experience

Research and Teaching Assistant from October 2002 at EPFL

• Participation in research activities in the Security and Cryptography Laboratory.

• Teaching assistant for the exercise sessions of the course “Cryptography and Se-
curity” in 2003, 2004, 2006.

• Teaching assistant for the exercise sessions of the course “Advanced Cryptography”
in 2005.

• Supervisor of 8 student projects.

Education

October 2002– PhD studies in cryptography, supervised by Prof. Serge
Vaudenay, Swiss Federal Institute of Technology in Lau-
sanne (EPFL)

August–September 2002 English language course at the Australian College of
English, Bondi Junction, Sydney, Australia

April–July 2002 Graduate school project, supervised by Prof. Serge
Vaudenay, Swiss Federal Institute of Technology in Lau-
sanne (EPFL)

1997–March 2002 Master studies in mathematics, Swiss Federal Institute
of Technology in Zurich (ETHZ)

1994–1997 Lycée cantonal de Porrentruy (high school), scientific
section

— 195 —

Curriculum Vitæ

Scientific Work

Book

• T. Baignères, P. Junod, Y. Lu, J. Monnerat, and S. Vaudenay, A Classical Intro-
duction to Cryptography – Exercise Book, Springer, 2005.

Papers with Peer Review

• J. Monnerat and S. Vaudenay, Short 2-Move Undeniable Signatures, VI-
ETCRYPT ’06, LNCS 4341, pp. 19–36, Springer, 2006.

• J. Monnerat, Y. A. Oswald, and S. Vaudenay, Optimization of the MOVA Unde-
niable Signature Scheme, Progress in Cryptology – MYCRYPT ’05, LNCS 3715,
pp. 196–209, Springer, 2005.

• J. Monnerat and S. Vaudenay, Chaum’s Designated Confirmer Signature Revisited,
ISC ’05, LNCS 3650, pp. 164–178, Springer, 2005.

• F. Leprévost, J. Monnerat, S. Varrette, and S. Vaudenay, Generating Anomalous
Elliptic Curves, Information Processing Letters 93(5), pp. 225–230, Elsevier, 2005.

• G. Avoine, J. Monnerat, and T. Peyrin, Advances in Alternative Non-adjacent
Form Representations, Progress in Cryptology – INDOCRYPT ’04, LNCS 3348,
pp. 260–274, Springer, 2004.

• J. Monnerat and S. Vaudenay, Generic Homomorphic Undeniable Signatures, Ad-
vances in Cryptology –ASIACRYPT ’04, LNCS 3329, pp. 354–371, Springer, 2004.

• J. Monnerat and S. Vaudenay, On some Weak Extensions of AES and BES,
ICICS ’04, LNCS 3269, pp. 414–426, Springer, 2004.

• J. Monnerat and S. Vaudenay, Undeniable Signatures Based on Characters: How
to Sign with One Bit, PKC ’04, LNCS 2947, pp. 69–85, Springer, 2004.

— 196 —

Curriculum Vitæ

Technical Report

• J. Monnerat, Computation of the Discrete Logarithm on Elliptic Curves
of Trace One, Technical Report LASEC-REPORT-2002-001 200249, EPFL,
http://infoscience.epfl.ch/getfile.py?recid=52470&ln=en

Other Activities

• General co-chair (with Serge Vaudenay) of the international workshop “Theory and
Practice in Public Key Cryptography – PKC 2005” in Les Diablerets (Switzerland),
2005.

• External reviewer for 25 conferences and one journal.

Awards

Participation in the International Mathematical Olympiad at Mar del Plata (Argentina),
1997.

2nd rank at the swiss selection for participation in the International Mathematical
Olympiad in Bern, 1997.

5th rank at the final of the international mathematical and logical games contest in
Paris, 1994.

19th rank at the final of the international mathematical and logical games contest in
Paris, 1992.

Patent

J. Monnerat and S. Vaudenay, Method to Generate, Verify and Deny an Undeniable
Signature, PCT/EP2005/001335, February 13, 2004.

Languages

French Mother tongue
English Working language
German Written and spoken fluently

— 197 —

